Скачать книгу

banana, glance at the latest telegrams from all the world, scrutinise the prices current of his geographically distributed investments in South Africa, Japan, and Egypt, and tell the two children he had begotten (in the place of his father’s eight) that he thought the world changed very little. They must play cricket, keep their hair cut, go to the old school he had gone to, shirk the lessons he had shirked, learn a few scraps of Horace and Virgil and Homer for the confusion of cads, and all would be well with them. …

       Table of Contents

      Electricity, though it was perhaps the earlier of the two to be studied, invaded the common life of men a few decades after the exploitation of steam. To electricity also, in spite of its provocative nearness all about him, mankind had been utterly blind for incalculable ages. Could anything be more emphatic than the appeal of electricity for attention? It thundered at man’s ears, it signalled to him in blinding flashes, occasionally it killed him, and he could not see it as a thing that concerned him enough to merit study. It came into the house with the cat on any dry day and crackled insinuatingly whenever he stroked her fur. It rotted his metals when he put them together. … There is no single record that any one questioned why the cat’s fur crackles or why hair is so unruly to brush on a frosty day, before the sixteenth century. For endless years man seems to have done his very successful best not to think about it at all; until this new spirit of the Seeker turned itself to these things.

      How often things must have been seen and dismissed as unimportant, before the speculative eye and the moment of vision came! It was Gilbert, Queen Elizabeth’s court physician, who first puzzled his brains with rubbed amber and bits of glass and silk and shellac, and so began the quickening of the human mind to the existence of this universal presence. And even then the science of electricity remained a mere little group of curious facts for nearly two hundred years, connected perhaps with magnetism—a mere guess that—perhaps with the lightning. Frogs’ legs must have hung by copper hooks from iron railings and twitched upon countless occasions before Galvani saw them. Except for the lightning conductor, it was 250 years after Gilbert before electricity stepped out of the cabinet of scientific curiosities into the life of the common man. … Then suddenly, in the half-century between 1880 and 1930, it ousted the steam-engine and took over traction, it ousted every other form of household heating, abolished distance with the perfected wireless telephone and the telephotograph. …

       Table of Contents

      And there was an extraordinary mental resistance to discovery and invention for at least a hundred years after the scientific revolution had begun. Each new thing made its way into practice against a scepticism that amounted at times to hostility. One writer upon these subjects gives a funny little domestic conversation that happened, he says, in the year 1898, within ten years, that is to say, of the time when the first aviators were fairly on the wing. He tells us how he sat at his desk in his study and conversed with his little boy.

      His little boy was in profound trouble. He felt he had to speak very seriously to his father, and as he was a kindly little boy he did not want to do it too harshly.

      This is what happened.

      ‘I wish, Daddy,’ he said, coming to his point, ‘that you wouldn’t write all this stuff about flying. The chaps rot me.’

      ‘Yes!’ said his father.

      ‘And old Broomie, the Head I mean, he rots me. Everybody rots me.’

      ‘But there is going to be flying—quite soon.’

      The little boy was too well bred to say what he thought of that. ‘Anyhow,’ he said, ‘I wish you wouldn’t write about it.’

      ‘You’ll fly—lots of times—before you die,’ the father assured him.

      The little boy looked unhappy.

      The father hesitated. Then he opened a drawer and took out a blurred and under-developed photograph. ‘Come and look at this,’ he said.

      The little boy came round to him. The photograph showed a stream and a meadow beyond, and some trees, and in the air a black, pencil-like object with flat wings on either side of it. It was the first record of the first apparatus heavier than air that ever maintained itself in the air by mechanical force. Across the margin was written: ‘Here we go up, up, up—from S. P. Langley, Smithsonian Institution, Washington.’

      The father watched the effect of this reassuring document upon his son. ‘Well?’ he said.

      ‘That,’ said the schoolboy, after reflection, ‘is only a model.’

      ‘Model to-day, man to-morrow.’

      The boy seemed divided in his allegiance. Then he decided for what he believed quite firmly to be omniscience. ‘But old Broomie,’ he said, ‘he told all the boys in his class only yesterday, “no man will ever fly.” No one, he says, who has ever shot grouse or pheasants on the wing would ever believe anything of the sort. …’

      Yet that boy lived to fly across the Atlantic and edit his father’s reminiscences.

       Table of Contents

      At the close of the nineteenth century as a multitude of passages in the literature of that time witness, it was thought that the fact that man had at last had successful and profitable dealings with the steam that scalded him and the electricity that flashed and banged about the sky at him, was an amazing and perhaps a culminating exercise of his intelligence and his intellectual courage. The air of ‘Nunc Dimittis’ sounds in same of these writings. ‘The great things are discovered,’ wrote Gerald Brown in his summary of the nineteenth century. ‘For us there remains little but the working out of detail.’ The spirit of the seeker was still rare in the world; education was unskilled, unstimulating, scholarly, and but little valued, and few people even then could have realised that Science was still but the flimsiest of trial sketches and discovery scarcely beginning. No one seems to have been afraid of science and its possibilities. Yet now where there had been but a score or so of seekers, there were many thousands, and for one needle of speculation that had been probing the curtain of appearances in 1800, there were now hundreds. And already Chemistry, which had been content with her atoms and molecules for the better part of a century, was preparing herself for that vast next stride that was to revolutionise the whole life of man from top to bottom.

      One realises how crude was the science of that time when one considers the case of the composition of air. This was determined by that strange genius and recluse, that man of mystery, that disembowelled intelligence, Henry Cavendish, towards the end of the eighteenth century. So far as he was concerned the work was admirably done. He separated all the known ingredients of the air with a precision altogether remarkable; he even put it upon record that he had some doubt about the purity of the nitrogen. For more than a hundred years his determination was repeated by chemists all the world over, his apparatus was treasured in London, he became, as they used to say, ‘classic,’ and always, at every one of the innumerable repetitions of his experiment, that sly element argon was hiding among the nitrogen (and with a little helium and traces of other substances, and indeed all the hints that might have led to the new departures of the twentieth-century chemistry), and every time it slipped unobserved through the professorial fingers that repeated his procedure.

      Is it any wonder then with this margin of inaccuracy, that up to the very dawn of the twentieth-century scientific discovery was still rather a procession of happy accidents than an orderly conquest of

Скачать книгу