ТОП просматриваемых книг сайта:
Теоретические основы инвестиций в акции, облигации и стандартные опционы. Владимир Костин
Читать онлайн.Название Теоретические основы инвестиций в акции, облигации и стандартные опционы
Год выпуска 2023
isbn
Автор произведения Владимир Костин
Издательство Автор
Особую привлекательность имеет операция по покупке безрисковых активов исключительно за заёмные средства. В этом случае инвестор, не рискуя собственными денежными средствами, может увеличить своё благосостояние до бесконечности. Такая возможность может быть реализована только в одном случае: если безрисковая ставка будет превышать кредитную ставку. В противном случае инвестиция в безрисковые активы за счёт заёмных денежных средств будет заведомо бесприбыльной или убыточной и не может быть привлекательной для инвестора. Однако на практике даже равенство этих ставок невозможно, поскольку на денежном рынке безрисковая ставка (в данном случае ставка по векселям казначейства) является стандартом для сравнения всех ставок, а кредитная ставка всегда превышает безрисковую ставку. Разницу между кредитной и безрисковой ставками называют спредом [1].
В [1] для оценки эффективности инвестиций в портфель активов, включающий безрисковый и рискованные активы, с привлечением заёмных денежных средств рассмотрен частный, нетипичный для практики случай – кредитная ставка равна безрисковой ставке (т.е. величина спреда равна нулю).
Рассмотрим особенности инвестирования в портфель активов, включающий безрисковый и рискованный актив, с привлечением собственных и заёмных денежных средств (идея обобщения модели Г.Марковица на случай введения в портфель безрисковых активов и одновременного займа денежных средств принадлежит Дж.Тобину [1]). Вывод соотношения для МО доходности инвестиций осуществим с использованием исходной формулы (1.3). Предположим, что инвестор получил кредит размером с кредитной ставкой для инвестиции в портфель, содержащий безрисковый актив и рискованный актив .
Если инвестиция в портфель активов собственных средств обеспечивает МО дохода , то инвестиция собственных и заёмных средств будет приносить МО дохода (здесь – расходы на выплату за тело кредита, – расходы на выплату по процентам в денежном выражении). Тогда формула (1.3) преобразуется к виду
где – отношение заёмных и собственных денежных средств, инвестируемых в портфель активов (плечо финансового рычага или кредитное плечо).
СКО доходности такого актива будет определяться как
Из сравнительного анализа соотношений (1.22) и (1.23) представляется возможным сформулировать следующий вывод: если инвестор будет вкладывать в портфель активов исключительно заёмные денежные средства (т.е. собственные затраты инвестора отсутствуют и ), то МО доходности инвестиции будет бесконечной. Но и СКО доходности такой инвестиции также не ограничено.
Используя соотношения (1.22) и (1.23) с учётом условия , получаем
Анализ данной формулы (см. для сравнения формулу (1.14)) показывает, что:
зависимость