ТОП просматриваемых книг сайта:
Poly(lactic acid). Группа авторов
Читать онлайн.Название Poly(lactic acid)
Год выпуска 0
isbn 9781119767466
Автор произведения Группа авторов
Жанр Химия
Издательство John Wiley & Sons Limited
4 4. F. Luo, A. Fortenberry, J. Ren, Z. Qiang, Recent progress in enhancing poly(lactic acid) stereocomplex formation for material property improvement, Front. Chem. 2020, 8, 688.
5 5. D. Karst, Y. Yang, Molecular modeling study of the resistance of PLA to hydrolysis based on the blending of PLLA and PDLA, Polymer 2006, 47(13), 4845–4850.
6 6. H. Tsuji in vitro hydrolysis of blends from enantiomeric poly(lactide)s. Part 4: well‐homo‐crystallized blend and nonblended films, Biomaterials 2003, 24(4), 537–547.
7 7. M. Kakuta, M. Hirata, Y. Kimura, Stereoblock polylactides as high‐performance bio‐based polymers, Polym. Rev. 2009, 49(2), 107–140.
8 8. H. Tsuji, Poly(lactic acid) stereocomplexes: a decade of progress, Adv. Drug Deliv. Rev. 2016, 107, 97–135.
9 9. M. Saravanan, A. J. Domb, A contemporary review on—polymer stereocomplexes and its biomedical application, Eur. J. Nanomed. 2013, 5(2), 81–96.
10 10. P. Pan, Y. Inoue, Polymorphism and isomorphism in biodegradable polyesters, Progr. Polym. Sci. 2009, 34(7), 605–640.
11 11. L. Han, P. Pan, G. Shan, Y. Bao, Stereocomplex crystallization of high‐molecular‐weight poly(l‐lactic acid)/poly(d‐lactic acid) racemic blends promoted by a selective nucleator, Polymer 2015, 63, 144–153.
12 12. S. Nagarajan, D. Krishnan, V. P. Sivaprasad, E. Bhoje Gowd, Chapter 5—Crystallization behavior of crystalline–amorphous and crystalline–crystalline block copolymers containing poly(l‐lactide), in: S. Thomas, P. M. Arif, E. B. Gowd, N. Kalarikkal (Eds.), Crystallization in Multiphase Polymer Systems, Elsevier, Amsterdam, 2018, pp. 93–122.
13 13. H. Tsuji, F. Horii, S. H. Hyon, Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated solutions, Macromolecules 1991, 24(10), 2719–2724.
14 14. K. Scheuer, D. Bandelli, C. Helbing, C. Weber, J. Alex, J. B. Max, et al., Self‐assembly of copolyesters into stereocomplex crystallites tunes the properties of polyester nanoparticles, Macromolecules 2020, 53(19), 8340–8351.
15 15. B. Na, J. Zhu, R. Lv, Y. Ju, R. Tian, B. Chen, Stereocomplex formation in enantiomeric polylactides by melting recrystallization of homocrystals: crystallization kinetics and crystal morphology, Macromolecules 2014, 47(1), 347–352.
16 16. H. Tsuji, S. Yamamoto, Enhanced stereocomplex crystallization of biodegradable enantiomeric poly(lactic acid)s by repeated casting, Macromol. Mater. Eng. 2011, 296(7), 583–589.
17 17. R. Lv, N. Peng, T. Jin, B. Na, J. Wang, H. Liu, Stereocomplex mesophase and its phase transition in enantiomeric polylactides, Polymer 2017, 116, 324–330.
18 18. E. M. Woo, L. Chang, Crystallization and morphology of stereocomplexes in nonequimolar mixtures of poly(l‐lactic acid) with excess poly(d‐lactic acid), Polymer 2011, 52(26), 6080–6089.
19 19. L. Gardella, A. Basso, M. Prato, O. Monticelli, On stereocomplexed polylactide materials as support for PAMAM dendrimers: synthesis and properties, RSC Adv. 2015, 5(58), 46774–46784.
20 20. A. Gupta, N. Mulchandani, M. Shah, S. Kumar, V. Katiyar, Functionalized chitosan mediated stereocomplexation of poly(lactic acid): influence on crystallization, oxygen permeability, wettability and biocompatibility behavior, Polymer 2018, 142, 196–208.
21 21. L. Bouapao, H. Tsuji, Stereocomplex crystallization and spherulite growth of low molecular weight poly(l‐lactide) and poly(d‐lactide) from the melt, Macromol. Chem. Phys. 2009, 210(12), 993–1002.
22 22. T. Biela, A. Duda, S. Penczek, Enhanced melt stability of star‐shaped stereocomplexes as compared with linear stereocomplexes, Macromolecules 2006, 39(11), 3710–3713.
23 23. L. Jiang, P. Lv, P. Ma, H. Bai, W. Dong, M. Chen, Stereocomplexation kinetics of enantiomeric poly(l‐lactide)/poly(d‐lactide) blends seeded by nanocrystalline cellulose, RSC Adv. 2015, 5(87), 71115–71119.
24 24. Z. Xiong, X. Zhang, R. Wang, S. de Vos, R. Wang, C. A. P. Joziasse, et al., Favorable formation of stereocomplex crystals in poly(l‐lactide)/poly(d‐lactide) blends by selective nucleation, Polymer 2015, 76, 98–104.
25 25. Q. Xie, X. Chang, Q. Qian, P. Pan, C. Y. Li, Structure and morphology of poly(lactic acid) stereocomplex nanofiber shish kebabs, ACS Macro Lett. 2020, 9(1), 103–107.
26 26. M. Septiyanti, A. A. Septevani, M. Ghozali, S. Fahmiati, E. Triwulandari, W. K. Restu, et al., Effect of solvent combination on electrospun stereocomplex polylactic acid nanofiber properties, Macromol. Symp. 2020, 391(1), 1900134.
27 27. N. Kurokawa, A. Hotta, Thermomechanical properties of highly transparent self‐reinforced polylactide composites with electrospun stereocomplex polylactide nanofibers, Polymer 2018, 153, 214–222.
28 28. M. Spasova, N. Manolova, D. Paneva, R. Mincheva, P. Dubois, I. Rashkov, et al., Polylactide stereocomplex‐based electrospun materials possessing surface with antibacterial and hemostatic properties, Biomacromolecules 2010, 11(1), 151–159.
29 29. H. Tsuji, M. Nakano, M. Hashimoto, K. Takashima, S. Katsura, A. Mizuno, Electrospinning of poly(lactic acid) stereocomplex nanofibers, Biomacromolecules 2006, 7(12), 3316–3320.
30 30. Y. Furuhashi, Y. Kimura, N. Yoshie, Self‐assembly of stereocomplex‐type poly(lactic acid), Polym. J. 2006, 38(10), 1061–1067.
31 31. L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, B. Lotz, Epitaxial crystallization and crystalline polymorphism of polylactides, Polymer 2000, 41(25), 8909–8919.
32 32. T. Okihara, M. Tsuji, A. Kawaguchi, K.‐I. Katayama, H. Tsuji, S.‐H. Hyon, et al., Crystal structure of stereocomplex of poly(l‐lactide) and poly(d‐lactide), J. Macromol. Sci. Part B 1991, 30(1–2), 119–140.
33 33. L. Cartier, T. Okihara, B. Lotz, Triangular polymer single crystals: stereocomplexes, twins, and frustrated structures, Macromolecules 1997, 30(20), 6313–6322.
34 34. D. Brizzolara, H.‐J. Cantow, K. Diederichs, E. Keller, A. J. Domb, Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s, Macromolecules 1996, 29(1), 191–197.
35 35. D. Sawai, Y. Tsugane, M. Tamada, T. Kanamoto, M. Sungil, S.‐H. Hyon, Crystal density and heat of fusion for a stereo‐complex of poly(l‐lactic acid) and poly(d‐lactic acid), J. Polym. Sci. Part B Polym. Phys. 2007, 45(18), 2632–2639.
36 36. K. Tashiro, N. Kouno, H. Wang, H. Tsuji, Crystal structure of poly(lactic acid) stereocomplex: random packing model of PDLA and PLLA chains as studied by X‐ray diffraction analysis, Macromolecules 2017, 50(20), 8048–8065.
37 37. K. Tashiro, H. Wang, N. Kouno, J. Koshobu, K. Watanabe, Confirmation of the X‐ray‐analyzed heterogeneous distribution of the PDLA and PLLA chain stems in the crystal lattice of poly(lactic acid) stereocomplex on the basis of the vibrational circular dichroism IR spectral measurement, Macromolecules 2017, 50(20), 8066–8071.
38 38. M. Spinu, C. Jackson, M. Y. Keating, K. H. Gardner, Material design in poly(lactic acid) systems: block copolymers, star homo‐ and copolymers, and stereocomplexes, J. Macromol. Sci. Part A 1996, 33(10), 1497–1530.
39 39. Z. Kan, W. Luo, T. Shi, C. Wei, B. Han, D. Zheng, et al., Facile preparation of stereoblock PLA from ring‐opening polymerization of rac‐lactide by a synergetic binary catalytic system containing ureas and alkoxides, Front. Chem. 2018, 6, 547.
40 40. M. Hirata, K. Masutani, Y. Kimura, Synthesis of ABCBA penta stereoblock polylactide copolymers by two‐step ring‐opening polymerization of l‐ and d‐lactides with poly(3‐methyl‐1,5‐pentylene succinate) as macroinitiator (C): development of flexible stereocomplexed polylactide materials, Biomacromolecules 2013, 14(7), 2154–2161.
41 41. R. H. Platel, L. M. Hodgson, C. K. Williams, Biocompatible initiators for lactide polymerization, Polym. Rev. 2008, 48(1), 11–63.
42 42. M. J. Stanford, A. P. Dove, Stereocontrolled ring‐opening polymerisation of lactide, Chem. Soc. Rev. 2010, 39(2),