Скачать книгу

в физику. Совершенствование интегральных схем шло по пути сокращения расстояния между соседними транзисторами, что позволяло чем дальше, тем больше натолкать их в микросхему. В 1971 г. расстояние между транзисторами составляло 10 тыс. нанометров. К 2000 г. оно сократилось где-то до сотни нанометров. Сегодня его удалось сократить до пяти, и вот тут-то начались трудности[77]. При таких микроскопических масштабах – а это уже молекулярный уровень – число задействованных в переносе тока электронов сокращается, и эти полупроводниковые элементы начинают ощущать влияние квантования проводимости, что разрушает их вычислительную способность. Это ставит жесткий физический предел увеличению числа транзисторов, и это лебединая песня закона Мура.

      А может, и нет.

      «Закон Мура был не первой[78], а только пятой по счету парадигмой, ускорявшей рост соотношения цена/производительность, – пишет в книге “Закон ускоряющейся отдачи”[79] Рэймонд Курцвейл. – Мощность вычислительных устройств (в единицу времени) постоянно умножалась, начиная с механических счетных устройств, применявшихся при переписи населения США 1890 года; потом была дешифровочная машина Robinson Алана Тьюринга, взломавшая секретные коды нацистской Enigma, затем – ламповая вычислительная машина CBS, предсказавшая избрание Эйзенхауэра в президенты США, далее – компьютеры на основе транзисторов, использовавшиеся для первых космических запусков, а потом дошло и до персональных компьютеров на интегральных микросхемах, на один из которых я сейчас надиктовываю этот свой очерк».

      Курцвейл отмечает, что всякий раз, когда экспоненциальная технология исчерпывает свою полезность, на смену ей приходит другая. Так дело обстоит и с транзисторами. Сейчас выдвинуто уже с полдюжины решений, предотвращающих конец закона Мура. Исследуются альтернативные способы применения материалов, например замена кремниевых микросхем карбоновыми нанотрубками, что ускорит переключения и улучшит рассеяние тепла. Тестируются и новаторские конструкторские решения, в том числе трехмерные интегральные схемы, которые за счет компактной упаковки увеличивают площадь поверхности для размещения транзисторов. Разработаны и специализированные микросхемы – при ограниченной функциональности быстродействие у них фантастическое. Или взять разработанный компанией Apple в 2018 году процессор А12 Bionic[80]: он не только управляет ИИ-приложениями, но и проделывает это с молниеносной скоростью девять триллионов операций в секунду.

      Но все это бледнеет в сравнении с квантовыми вычислениями.

      В 2002 г. учредитель D-Wave, одной из самых первых компаний, взявшихся создавать квантовые компьютеры, Джорди Роуз выдвинул квантовую версию закона Мура, получившую название закона Роуза[81]. Логика та же, что и у закона Мура: число кубитов в квантовом компьютере каждый год удваивается. Однако закон Роуза характеризуют как «закон Мура на стероидах», поскольку кубиты в суперпозиции обладают намного большей

Скачать книгу


<p>77</p>

10 тыс. нанометров – это техпроцесс начала 1970-х гг. Техпроцесс – то, с какой точностью можно напечатать на плате то, что спроектировано. При описанной точности техпроцесса расстояние между процессорами, скорее всего, было больше. Например, в процессорах Intel уже в 2000-х гг. при 14-нанометровом процессоре расстояния между транзисторами составляли 70 нанометров. Прим. науч. ред.

<p>78</p>

Kurzweil, Law of Accelerating Returns.

<p>79</p>

В сети есть неизданные переводы на русский язык. Прим. ред.

<p>80</p>

См.: apple.com/iphone-xs/a12-bionic/.

<p>81</p>

Тим Феррисс отлично поработал, полно описав и саму идею, и историю ее появления, см.: tim.blog/2018/05/31/steve-jurvetson/.