Скачать книгу

TABLES

      QUANTITATIVE CHEMICAL ANALYSIS

       Table of Contents

       Table of Contents

      INTRODUCTION

      SUBDIVISIONS OF ANALYTICAL CHEMISTRY

      A complete chemical analysis of a body of unknown composition involves the recognition of its component parts by the methods of !qualitative analysis!, and the determination of the proportions in which these components are present by the processes of !quantitative analysis!. A preliminary qualitative examination is generally indispensable, if intelligent and proper provisions are to be made for the separation of the various constituents under such conditions as will insure accurate quantitative estimations.

      It is assumed that the operations of qualitative analysis are familiar to the student, who will find that the reactions made use of in quantitative processes are frequently the same as those employed in qualitative analyses with respect to both precipitation and systematic separation from interfering substances; but it should be noted that the conditions must now be regulated with greater care, and in such a manner as to insure the most complete separation possible. For example, in the qualitative detection of sulphates by precipitation as barium sulphate from acid solution it is not necessary, in most instances, to take into account the solubility of the sulphate in hydrochloric acid, while in the quantitative determination of sulphates by this reaction this solubility becomes an important consideration. The operations of qualitative analysis are, therefore, the more accurate the nearer they are made to conform to quantitative conditions.

      The methods of quantitative analysis are subdivided, according to their nature, into those of !gravimetric analysis, volumetric analysis!, and !colorimetric analysis!. In !gravimetric! processes the constituent to be determined is sometimes isolated in elementary form, but more commonly in the form of some compound possessing a well-established and definite composition, which can be readily and completely separated, and weighed either directly or after ignition. From the weight of this substance and its known composition, the amount of the constituent in question is determined.

      In !volumetric! analysis, instead of the final weighing of a definite body, a well-defined reaction is caused to take place, wherein the reagent is added from an apparatus so designed that the volume of the solution employed to complete the reaction can be accurately measured. The strength of this solution (and hence its value for the reaction in question) is accurately known, and the volume employed serves, therefore, as a measure of the substance acted upon. An example will make clear the distinction between these two types of analysis. The percentage of chlorine in a sample of sodium chloride may be determined by dissolving a weighed amount of the chloride in water and precipitating the chloride ions as silver chloride, which is then separated by filtration, ignited, and weighed (a !gravimetric! process); or the sodium chloride may be dissolved in water, and a solution of silver nitrate containing an accurately known amount of the silver salt in each cubic centimeter may be cautiously added from a measuring device called a burette until precipitation is complete, when the amount of chlorine may be calculated from the number of cubic centimeters of the silver nitrate solution involved in the reaction. This is a !volumetric! process, and is equivalent to weighing without the use of a balance.

      Volumetric methods are generally more rapid, require less apparatus, and are frequently capable of greater accuracy than gravimetric methods. They are particularly useful when many determinations of the same sort are required.

      In !colorimetric! analyses the substance to be determined is converted into some compound which imparts to its solutions a distinct color, the intensity of which must vary in direct proportion to the amount of the compound in the solution. Such solutions are compared with respect to depth of color with standard solutions containing known amounts of the colored compound, or of other similar color-producing substance which has been found acceptable as a color standard. Colorimetric methods are, in general, restricted to the determinations of very small quantities, since only in dilute solutions are accurate comparisons of color possible.

       Table of Contents

      The following paragraphs should be read carefully and thoughtfully. A prime essential for success as an analyst is attention to details and the avoidance of all conditions which could destroy, or even lessen, confidence in the analyses when completed. The suggestions here given are the outcome of much experience, and their adoption will tend to insure permanently work of a high grade, while neglect of them will often lead to disappointment and loss of time.

      ACCURACY AND ECONOMY OF TIME

      The fundamental conception of quantitative analysis implies a necessity for all possible care in guarding against loss of material or the introduction of foreign matter. The laboratory desk, and all apparatus, should be scrupulously neat and clean at all times. A sponge should always be ready at hand, and desk and filter-stands should be kept dry and in good order. Funnels should never be allowed to drip upon the base of the stand. Glassware should always be wiped with a clean, lintless towel just before use. All filters and solutions should be covered to protect them from dust, just as far as is practicable, and every drop of solution or particle of precipitate must be regarded as invaluable for the success of the analysis.

      An economical use of laboratory hours is best secured by acquiring a thorough knowledge of the character of the work to be done before undertaking it, and then by so arranging the work that no time shall be wasted during the evaporation of liquids and like time-consuming operations. To this end the student should read thoughtfully not only the !entire! procedure, but the explanatory notes as well, before any step is taken in the analysis. The explanatory notes furnish, in general, the reasons for particular steps or precautions, but they also occasionally contain details of manipulation not incorporated, for various reasons, in the procedure. These notes follow the procedures at frequent intervals, and the exact points to which they apply are indicated by references. The student should realize that a !failure to study the notes will inevitably lead to mistakes, loss of time, and an inadequate understanding of the subject!.

      All analyses should be made in duplicate, and in general a close agreement of results should be expected. It should, however, be remembered that a close concordance of results in "check analyses" is not conclusive evidence of the accuracy of those results, although the probability of their accuracy is, of course, considerably enhanced. The satisfaction in obtaining "check results" in such analyses must never be allowed to interfere with the critical examination of the procedure employed, nor must they ever be regarded as in any measure a substitute for absolute truth and accuracy.

      In this connection it must also be emphasized that only the operator himself can know the whole history of an analysis, and only he can know whether his work is worthy of full confidence. No work should be continued for a moment after such confidence is lost, but should be resolutely discarded as soon as a cause for distrust is fully established. The student should, however, determine to put forth his best efforts in each analysis; it is well not to be too ready to condone failures and to "begin again," as much time is lost in these fruitless attempts. Nothing less than !absolute integrity! is or can be demanded of a quantitative analyst, and any disregard of this principle, however slight, is as fatal to success as lack of chemical knowledge or inaptitude in manipulation can possibly be.

      NOTEBOOKS

      Notebooks should contain, beside the record of observations, descriptive notes. All records of weights should be placed upon the right-hand page, while that on the left is reserved for the notes, calculations of factors, or the amount of reagents required.

      The neat

Скачать книгу