ТОП просматриваемых книг сайта:
Pleasures of the telescope. Garrett Putman Serviss
Читать онлайн.Название Pleasures of the telescope
Год выпуска 0
isbn 4064066223458
Автор произведения Garrett Putman Serviss
Жанр Языкознание
Издательство Bookwire
The Star Image.
And now for testing the telescope. It has already been remarked that the excellence of a telescope depends upon the perfection of the image formed at the focus of the objective. In what follows I have only a refractor in mind, although the same principles would apply to a reflector. With a little practice anybody who has a correct eye can form a fair judgment of the excellence of a telescopic image. Suppose we have our telescope steadily mounted out of doors (if you value your peace of mind you will not try to use a telescope pointed out of a window, especially in winter), and suppose we begin our observations with the pole star, employing a magnifying power of sixty or seventy to the inch. Our first object is to see if the optician has given us a good glass. If the air is not reasonably steady we had better postpone our experiment to another night, because we shall find that the star as seen in the telescope flickers and "boils," and behaves in so extraordinary a fashion that there is no more definition in the image than there is steadiness in a bluebottle buzzing on a window pane. But if the night is a fine one the star image will be quiescent, and then we may note the following particulars: The real image is a minute bright disk, about one second of arc in diameter if we are using a four-and-a-half or five-inch telescope, and surrounded by one very thin ring of light, and the fragments, so to speak, of one or possibly two similar rings a little farther from the disk, and visible, perhaps, only by glimpses. These "diffraction rings" arise from the undulatory nature of light, and their distance apart as well as the diameter of the central disk depend upon the length of the waves of light. If the telescope is a really good one, and both object glass and eyepiece are properly adjusted, the disk will be perfectly round, slightly softer at the edge, but otherwise equally bright throughout; and the ring or rings surrounding it will be exactly concentric, and not brighter on one side than on another. Even if our telescope were only two inches or two inches and a half in aperture we should at once notice a little bluish star, the mere ghost of a star in a small telescope, hovering near the polar star. It is the celebrated "companion," but we shall see it again when we have more time to study it. Now let us put the star out of focus by turning the focusing screw. Suppose we turn it in such a way that the eyepiece moves slightly outside the focus, or away from the object glass. Very beautiful phenomena immediately begin to make their appearance. A slight motion outward causes the little disk to expand perceptibly, and just as this expansion commences, a bright-red point appears at the precise center of the disk. But, the outward motion continuing, this red center disappears, and is replaced by a blue center, which gradually expands into a sort of flare over the middle of the disk. The disk itself has in the mean time enlarged into a series of concentric bright rings, graduated in luminosity with beautiful precision from center toward circumference. The outermost ring is considerably brighter, however, than it would be if the same gradation applied to it as applies to the inner rings, and it is surrounded, moreover, on its outer edge by a slight flare which tends to increase its apparent width. Next let us return to the focus and then move the eyepiece gradually inside the focal point or plane. Once more the star disk expands into a series of circles, and, if we except the color phenomena noticed outside the focus, these circles are precisely like those seen before in arrangement, in size, and in brightness. If they were not the same, we should pronounce the telescope to be imperfect. There is one other difference, however, besides the absence of the blue central flare, and that is a faint reddish edging around the outer ring when the expansion inside the focus is not carried very far. Upon continuing to move the eyepiece inside or outside the focus we observe that the system of rings becomes larger, while the rings themselves rapidly increase in number, becoming at the same time individually thinner and fainter.
By studying the appearance of the star disk when in focus and of the rings when out of focus on either side, an experienced eye can readily detect any fault that a telescope may have. The amateur, of course, can only learn to do this by considerable practice. Any glaring and serious fault, however, will easily make itself manifest. Suppose, for example, we observe that the image of a star instead of being perfectly round is oblong, and that a similar defect appears in the form of the rings when the eyepiece is put out of focus. We know at once that something is wrong; but the trouble may lie either in the object glass, in the eyepiece, in the eye of the observer himself, or in the adjustment of the lenses in the tube. A careful examination of the image and the out-of-focus circles will enable us to determine with which of these sources of error we have to deal. If the star image when in focus has a sort of wing on one side, and if the rings out of focus expand eccentrically, appearing wider and larger on one side than on the other, being at the same time brightest on the least expanded side, then the object glass is probably not at right angles to the axis of the tube and requires readjustment. That part of the object glass on the side where the rings appear most expanded and faintest needs to be pushed slightly inward. This can be effected by means of counterscrews placed for that purpose in or around the cell. But it, after we have got the object glass properly squared to the axis of the tube or the line of sight, the image and the ring system in and out of focus still appear oblong, the fault of astigmatism must exist either in the objective, the eyepiece, or the eye. The chances are very great that it is the eye itself that is at fault. We may be certain of this if we find, on turning the head so as to look into the telescope with the eye in different positions, that the oblong image turns with the head of the observer, keeping its major axis continually in the same relative position with respect to the eye. The remedy then is to consult an oculist and get a pair of cylindrical eyeglasses. If the oblong image does not turn round with the eye, but does turn when the eyepiece is twisted round, then the astigmatism is in the latter. If, finally, it does not follow either the eye or the eyepiece, it is the objective that is at fault.
But instead of being oblong, the image and the rings may be misshapen in some other way. If they are three-cornered, it is probable that the object glass is subjected to undue pressure in its cell. This, if the telescope has been brought out on a cool night from a warm room, may arise from the unequal contraction of the metal work and the glass as they cool off. In fact, no good star image can be got while a telescope is assuming the temperature of the surrounding atmosphere. Even the air inclosed in the tube is capable of making much trouble until its temperature has sunk to the level of that outside. Half an hour at least is required for a telescope to adjust itself to out-of-door temperature, except in the summer time, and it is better to allow an hour or two for such adjustment in cold weather. Any irregularity in the shape of the rings which persists after the lenses have been accurately adjusted and the telescope has properly cooled may be ascribed to imperfections, such as veins or spots of unequal density in the glass forming the objective.
The Out-of-Focus Rings. 1, Correct figure; 2 and 3, spherical aberration.
The spherical aberration of an object glass may be undercorrected or overcorrected. In the former case the central rings inside the focus will appear faint and the outer ones unduly strong, while outside the focus the central rings will be too bright and the outer ones too feeble. But if the aberration is overcorrected the central rings will be overbright inside the focus and abnormally faint outside the focus.
Assuming that we have a telescope in which no obvious fault is discernible, the next thing is to test its powers in actual work. In what is to follow I shall endeavor to describe some of the principal objects in the heavens from which the amateur observer may expect to derive pleasure and instruction, and which may at the same time serve as tests of the excellence of his telescope. No one should be deterred or discouraged in the study of celestial objects by the apparent insignificance of his means of observation. The accompanying pictures of the planet Mars may serve as an indication of the fact that a small telescope is frequently capable of doing work that appears by no means contemptible when placed side by side with that of the greater instruments of the observatories.