Скачать книгу

      Сверточные нейронные сети (CNN), изначально разработанные для обработки изображений, также могут быть применены к текстовым данным. Для этого текст обрабатывается как последовательность символов или слов, и каждый элемент последовательности (символ или слово) кодируется в числовой форме. Затем текст преобразуется в матрицу, где каждый столбец соответствует символу или слову, а строки – контекстным окнам (например, наборам слов или символов).

      Давайте рассмотрим этот процесс более подробно:

      Кодирование текста: Сначала текст кодируется в числовую форму. Это может быть выполнено с использованием токенизации, при которой каждому уникальному слову или символу назначается уникальное числовое значение (индекс). Эти числовые значения представляют слова или символы в числовой форме.

      Представление в виде матрицы: Кодированный текст представляется в виде матрицы, где каждый столбец соответствует слову или символу, а строки представляют контекстные окна. Это означает, что каждая строка матрицы представляет собой последовательность слов или символов из исходного текста. Размерность матрицы зависит от размера контекстного окна и размера словаря (количество уникальных слов или символов).

      Сверточные слои: Сверточные слои в CNN применяются к матрице, чтобы извлечь важные признаки из текста. Свертка происходит путем сканирования фильтров (ядер свертки) через матрицу. Эти фильтры могут выявлять различные шаблоны и особенности в тексте, такие как последовательности слов или символов. Результатом свертки является новая матрица, называемая картой признаков (feature map).

      Пулинг (Pooling): После применения сверточных слоев может выполняться операция пулинга. Пулинг используется для уменьшения размерности карты признаков, уменьшая количество параметров и улучшая обобщающую способность модели. Обычно используется операция максимального пулинга (MaxPooling), которая выделяет наибольшие значения из окна, перемещая его по карте признаков.

      Полносвязные слои: После применения сверточных и пулинговых слоев информация передается в полносвязные слои для классификации или регрессии. Полносвязные слои работают с вектором признаков, полученным из карты признаков после операции пулинга.

      Преимущество использования CNN для текстовых данных заключается в способности модели извлекать локальные и глобальные признаки из текста, что может улучшить способность модели к анализу и классификации текста. Этот метод также позволяет модели работать с последовательностями разной длины, благодаря использованию окон и пулинга.

      Следующий код решает задачу бинарной классификации текстовых отзывов на положительные и отрицательные. Каждый отзыв имеет метку 1 (положительный) или 0 (отрицательный).

      В результате выполнения этого кода:

      1. Мы создаем модель сверточной нейронной сети (CNN), которая способна анализировать тексты.

      2. Загружаем обучающие данные в виде массива текстов `texts` и их меток `labels`.

      3. Создаем токенизатор для преобразования текстов в численные последовательности и приводим тексты к числовому представлению.

      4. Выравниваем текстовые последовательности до максимальной длины `max_sequence_length`, чтобы их можно было использовать в нейронной сети.

      5. Создаем модель CNN, состоящую из слоев Embedding, Conv1D, GlobalMaxPooling1D и Dense.

      6. Компилируем модель, используя оптимизатор

Скачать книгу