Скачать книгу

76(13), 4277–4285.

      156 Sun, X., Shen, X., Jain, R., Lin, Y., Wang, J., Sun, J., … & Yuan, Q. (2015). Synthesis of chemicals by metabolic engineering of microbes. Chemical Society Reviews, 44(11), 3760–3785.

      157 Surriya, O., Saleem, S. S., Waqar, K., Kazi, A. G., & Öztürk, M. (2015). Bio‐fuels: a blessing in disguise. In Phytoremediation for Green Energy (pp. 11–54). Springer, Dordrecht.

      158 Takeda, A., Cooper, K., Bird, A., Baxter, L., Gospodarevskaya, E., Frampton, G. K., … & Bryant, J. (2010). Recombinant human growth hormone for the treatment of growth disorders in children: a systematic review and economic evaluation. Health Technology Assessment, 14(42).

      159 Tamás, L., Huttová, J., Mistrk, I., & Kogan, G. (2002). Effect of carboxymethyl chitin‐glucan on the activity of some hydrolytic enzymes in maize plants. Chemical Papers, 56(5), 326–329.

      160 Tanimoto, H. (2010). Food applications of poly‐gamma‐glutamic acid. In Amino‐acid homopolymers occurring in nature (pp. 155–168). Springer, Berlin, Heidelberg.

      161 Tippmann, S., Scalcinati, G., Siewers, V., & Nielsen, J. (2016). Production of farnesene and santalene by Saccharomyces cerevisiae using fed‐batch cultivations with RQ‐controlled feed. Biotechnology and Bioengineering, 113(1), 72–81.

      162 Tombolini, R., Povolo, S., Buson, A., Squartini, A., & Nuti, M. P. (1995). Poly‐β‐hydroxybutyrate (PHB) biosynthetic genes in Rhizobium meliloti 41. Microbiology, 141(10), 2553–2559.

      163 Trentacoste, E. M., Shrestha, R. P., Smith, S. R., Glé, C., Hartmann, A. C., Hildebrand, M., & Gerwick, W. H. (2013). Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proceedings of the National Academy of Sciences, 110(49), 19748–19753.

      164 Tyo, K. E., Alper, H. S., & Stephanopoulos, G. N. (2007). Expanding the metabolic engineering toolbox: more options to engineer cells. Trends in Biotechnology, 25(3), 132–137.

      165  Ulery, B. D., Nair, L. S., & Laurencin, C. T. (2011). Biomedical applications of biodegradable polymers. Journal of Polymer Science Part B: Polymer Physics, 49(12), 832–864.

      166 Vajo, Z., Fawcett, J., & Duckworth, W. C. (2001). Recombinant DNA technology in the treatment of diabetes: insulin analogs. Endocrine Reviews, 22(5), 706–717.

      167 Van Vlierberghe, S., Cnudde, V., Dubruel, P., Masschaele, B., Cosijns, A., De Paepe, I., … & Schacht, E. (2007). Porous gelatin hydrogels: 1. Cryogenic formation and structure analysis. Biomacromolecules, 8(2), 331–337.

      168 Vandenberghe, L. P., Soccol, C. R., Pandey, A., & Lebeault, J. M. (1999). Microbial production of citric acid. Brazilian Archives of Biology and Technology, 42(3), 263–276.

      169 Voloshin, R. A., Rodionova, M. V., Zharmukhamedov, S. K., Veziroglu, T. N., & Allakhverdiev, S. I. (2019). Biofuel production from plant and algal biomass. Международный научный журнал Альтернативная энергетика и экология, ( 7–9), 12–31.

      170 Walker R. F. (2006). Sermorelin: a better approach to management of adult‐onset growth hormone insufficiency?. Clinical Interventions in Aging, 1(4), 307–308.

      171 Wang, C., Yoon, S. H., Jang, H. J., Chung, Y. R., Kim, J. Y., Choi, E. S., & Kim, S. W. (2011). Metabolic engineering of Escherichia coli for α‐farnesene production. Metabolic engineering, 13(6), 648–655.

      172 Wang, L., Cao, Z., Hou, L., Yin, L., Wang, D., Gao, Q., … & Wang, D. (2016). The opposite roles of agdA and glaA on citric acid production in Aspergillus niger. Applied Microbiology and Biotechnology, 100(13), 5791–5803.

      173 Wang, M., Luan, G., & Lu, X. (2020). Engineering ethanol production in a marine cyanobacterium Synechococcus sp. PCC7002 through simultaneously removing glycogen synthesis genes and introducing ethanolgenic cassettes. Journal of Biotechnology.

      174 Wang, W., Li, Z., Xie, J., & Ye, Q. (2009). Production of succinate by a pflB ldhA double mutant of Escherichia coli overexpressing malate dehydrogenase. Bioprocess and Biosystems Engineering, 32(6), 737.

      175 Wu, C., Zhang, J., Chen, W., Wang, M., Du, G., & Chen, J. (2012). A combined physiological and proteomic approach to reveal lactic‐acid‐induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Applied Microbiology and Biotechnology, 93(2), 707–722.

      176 Wu, C., Zhang, J., Du, G., & Chen, J. (2013). Heterologous expression of Lactobacillus casei RecO improved the multiple‐stress tolerance and lactic acid production in Lactococcus lactis NZ9000 during salt stress. Bioresource Technology, 143, 238–241.

      177 Wu, H., Chen, J., & Chen, G. Q. (2016b). Engineering the growth pattern and cell morphology for enhanced PHB production by Escherichia coli. Applied Microbiology and Biotechnology, 100(23), 9907–9916.

      178  Wu, H., Fan, Z., Jiang, X., Chen, J., & Chen, G. Q. (2016a). Enhanced production of polyhydroxybutyrate by multiple dividing E. coli. Microbial Cell Factories, 15(1), 1–13.

      179 Xiong, W., Wu, P., Jia, Y., Wei, X., Xu, L., Yang, Y., … & Wu, G. (2016). Genome‐wide analysis of the terpene synthase gene family in physic nut (Jatropha curcas L.) and functional identification of six terpene synthases. Tree Genetics & Genomes, 12(5), 97.

      180 Xu, G., Liu, L., & Chen, J. (2012). Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae. Microbial Cell Factories, 11(1), 24.

      181 Yang, X., Nambou, K., Wei, L., & Hua, Q. (2016). Heterologous production of α‐farnesene in metabolically engineered strains of Yarrowia lipolytica. Bioresource Technology, 216, 1040–1048.

      182 Yoshino, F., Ikeda, H., Masukawa, H., & Sakurai, H. (2007). High photobiological hydrogen production activity of a Nostoc sp. PCC 7422 uptake hydrogenase‐deficient mutant with high nitrogenase activity. Marine Biotechnology, 9(1), 101–112.

      183 Breed, R. S., Murray E. G. D., & Smith N. R. (1957). Bergey's Manual of Determinative Bacteriology, 7. The Williams and Wilkins Company.

      184 Yu, Q., Cui, Z., Zheng, Y., Huo, H., Meng, L., Xu, J., & Gao, C. (2018). Exploring succinic acid production by engineered Yarrowia lipolytica strains using glucose at low pH. Biochemical Engineering Journal, 139, 51–56.

      185 Yu, S., Huang, D., Wen, J., Li, S., Chen, Y., & Jia, X. (2012). Metabolic profiling of a Rhizopus oryzae fumaric acid production mutant generated by femtosecond laser irradiation. Bioresource Technology, 114, 610–615.

      186 Zhang, B., & Yang, S. T. (2012). Metabolic engineering of Rhizopus oryzae: effects of overexpressing fumR gene on cell growth and fumaric acid biosynthesis from glucose. Process Biochemistry, 47(12), 2159–2165.

      187 Zhang, B., Skory, C. D., & Yang, S. T. (2012). Metabolic engineering of Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose. Metabolic Engineering, 14(5), 512–520.

      188 Zhao, C., Li, Z., Li, T., Zhang, Y., Bryant, D. A., & Zhao, J. (2015). High‐yield production of extracellular type‐I cellulose by the cyanobacterium Synechococcus sp. PCC 7002. Cell Discovery, 1(1), 1–12.

      189 Zhao, W., Li, J., Jin, K., Liu, W., Qiu, X., & Li, C. (2016). Fabrication of functional PLGA‐based electrospun scaffolds and their applications in biomedical engineering. Materials Science and Engineering: C, 59, 1181–1194.

      190 Zinn, M., & Hany, R. (2005). Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Advanced Engineering Materials, 7(5), 408–411.

       Sukumaran Karthika1, Manoj Kumar1, Santhalingam Gayathri1, Perumal Varalakshmi2, and Balasubramaniem Ashokkumar1

       1 Department of Genetic Engineering, School

Скачать книгу