ТОП просматриваемых книг сайта:
Biomolecular Engineering Solutions for Renewable Specialty Chemicals. Группа авторов
Читать онлайн.Название Biomolecular Engineering Solutions for Renewable Specialty Chemicals
Год выпуска 0
isbn 9781119771944
Автор произведения Группа авторов
Жанр Биология
Издательство John Wiley & Sons Limited
79 Kim, U. J., Birren, B. W., Slepak, T., Mancino, V., Boysen, C., Kang, H. L., … & Shizuya, H. (1996b). Construction and characterization of a human bacterial artificial chromosome library. Genomics, 34(2), 213–218.
80 Kim, W. J., Ahn, J. H., Kim, H. U., Kim, T. Y., & Lee, S. Y. (2017). Metabolic engineering of Mannheimia succiniciproducens for succinic acid production based on elementary mode analysis with clustering. Biotechnology Journal, 12(2), 1600701.
81 Kiss, R. D., & Stephanopoulos, G. (1992). Metabolic characterization of al‐lysine‐producing strain by continuous culture. Biotechnology and Bioengineering, 39(5), 565–574.
82 Klemm, D., Heublein, B., Fink, H. P., & Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 44(22), 3358–3393.
83 Klenow, H., & Henningsen, I. (1970). Selective elimination of the exonuclease activity of the deoxyribonucleic acid polymerase from Escherichia coli B by limited proteolysis. Proceedings of the National Academy of Sciences, 65(1), 168–175.
84 Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology, 86(10), 1059–1070.
85 Kosourov, S. N., Ghirardi, M. L., & Seibert, M. (2011). A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain. International Journal of Hydrogen Energy, 36(3), 2044–2048.
86 Koutinas, A. A., Malbranque, F., Wang, R., Campbell, G. M., & Webb, C. (2007). Development of an oat‐based biorefinery for the production of L (+)‐lactic acid by Rhizopus oryzae and various value‐added coproducts. Journal of Agricultural and Food Chemistry, 55(5), 1755–1761.
87 Kubo, Y., Takagi, H., & Nakamori, S. (2000). Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain. Journal of Bioscience and Bioengineering, 90(6), 619–624.
88 Kufryk, G. (2013). Advances in utilizing cyanobacteria for hydrogen production. Advances in Microbiology, 2013.
89 Kumar, G., Sivagurunathan, P., Pugazhendhi, A., Thi, N. B. D., Zhen, G., Chandrasekhar, K., & Kadier, A. (2017). A comprehensive overview on light independent fermentative hydrogen production from wastewater feedstock and possible integrative options. Energy Conversion and Management, 141, 390–402.
90 Kumar, Y., Khan, F., Rastogi, S., & Shasany, A. K. (2018). Genome‐wide detection of terpene synthase genes in holy basil (Ocimum sanctum L.). PloS One, 13(11), e0207097.
91 Laron Z. (2001). Insulin‐like growth factor 1 (IGF‐1): a growth hormone. Molecular Pathology, 54(5), 311–316.
92 Roumezi, B., Avilan, L., Risoul, V., Brugna, M., Rabouille, S., & Latifi, A. (2020). Overproduction of the Flv3B flavodiiron, enhances the photobiological hydrogen production by the nitrogen‐fixing cyanobacterium Nostoc PCC 7120. Microbial Cell Factories, 19(1), 1–10.
93 Lee, H. J., Lee, J., Lee, S. M., Um, Y., Kim, Y., Sim, S. J., … & Woo, H. M. (2017). Direct conversion of CO2 to α‐farnesene using metabolically engineered Synechococcus elongatus PCC 7942. Journal of Agricultural and Food Chemistry, 65(48), 10424–10428.
94 Lee, J. W., Yi, J., Kim, T. Y., Choi, S., Ahn, J. H., Song, H., … & Lee, S. Y. (2016). Homo‐succinic acid production by metabolically engineered Mannheimia succiniciproducens. Metabolic Engineering, 38, 409–417.
95 Lee, S. J., Lee, D. Y., Kim, T. Y., Kim, B. H., Lee, J., & Lee, S. Y. (2005). Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Applied and Environmental Microbiology, 71(12), 7880–7887.
96 Lehman, I. R., Bessman, M. J., Simms, E. S., & Kornberg, A. (1958). Enzymatic synthesis of deoxyribonucleic acid I. Preparation of substrates and partial purification of an enzyme from Escherichia coli. Journal of Biological Chemistry, 233(1), 163–170.
97 Li, J. W. H., & Vederas, J. C. (2009). Drug discovery and natural products: end of an era or an endless frontier?. Science, 325(5937), 161–165.
98 Li, N., Zhang, B., Wang, Z., Tang, Y. J., Chen, T., & Zhao, X. (2014). Engineering Escherichia coli for fumaric acid production from glycerol. Bioresource Technology, 174, 81–87.
99 Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., & Hu, Q. (2010). Chlamydomonas starchless mutant defective in ADP‐glucose pyrophosphorylase hyper‐accumulates triacylglycerol. Metabolic Engineering, 12(4), 387–391.
100 Lin, H., Bennett, G. N., & San, K. Y. (2005). Fed‐batch culture of a metabolically engineered Escherichia coli strain designed for high‐level succinate production and yield under aerobic conditions. Biotechnology and Bioengineering, 90(6), 775–779.
101 Linares, D. M., O’Callaghan, T. F., O’Connor, P. M., Ross, R. P., & Stanton, C. (2016). Streptococcus thermophilus APC151 strain is suitable for the manufacture of naturally GABA‐enriched bioactive yogurt. Frontiers in Microbiology, 7, 1876.
102 Lindberg, P., Park, S., & Melis, A. (2010). Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metabolic Engineering, 12(1), 70–79.
103 Liu, L. F. (1989). DNA topoisomerase poisons as antitumor drugs. Annual Review of Biochemistry, 58(1), 351–375.
104 Liu, M., Li, S., Xie, Y., Jia, S., Hou, Y., Zou, Y., & Zhong, C. (2018). Enhanced bacterial cellulose production by Gluconacetobacter xylinus via expression of Vitreoscilla hemoglobin and oxygen tension regulation. Applied Microbiology and Biotechnology, 102(3), 1155–1165.
105 Loo, C. Y., Lee, W. H., Tsuge, T., Doi, Y., & Sudesh, K. (2005). Biosynthesis and characterization of poly (3‐hydroxybutyrate‐co‐3‐hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnology Letters, 27(18), 1405–1410.
106 Loos, K. (Ed.). (2011). Biocatalysis in Polymer Chemistry. John Wiley & Sons.
107 Majidian, P., Tabatabaei, M., Zeinolabedini, M., Naghshbandi, M. P., & Chisti, Y. (2018). Metabolic engineering of microorganisms for biofuel production. Renewable and Sustainable Energy Reviews, 82, 3863–3885.
108 Masukawa, H., Mochimaru, M., & Sakurai, H. (2002). Disruption of the uptake hydrogenase gene, but not of the bidirectional hydrogenase gene, leads to enhanced photobiological hydrogen production by the nitrogen‐fixing cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology and Biotechnology, 58(5), 618–624.
109 Max, B., Salgado, J. M., Rodríguez, N., Cortés, S., Converti, A., & Domínguez, J. M. (2010). Biotechnological production of citric acid. Brazilian Journal of Microbiology, 41(4), 862–875.
110 Meijer, S., Nielsen, M. L., Olsson, L., & Nielsen, J. (2009). Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger. Journal of Industrial Microbiology & Biotechnology, 36(10), 1275–1280.
111 Meyer, J. (2007). [FeFe] hydrogenases and their evolution: a genomic perspective. Cellular and Molecular Life Sciences, 64(9), 1063.
112 Miller, R., Wu, G., Deshpande, R. R., Vieler, A., Gärtner, K., Li, X., … & Bullard, B. (2010). Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiology, 154(4), 1737–1752.
113 Morais, A. R., Dworakowska, S., Reis, A., Gouveia, L., Matos, C. T., Bogdał, D., & Bogel‐Łukasik, R. (2015). Chemical and biological‐based isoprene production: green metrics. Catalysis Today, 239, 38–43.
114 Najar, I. N., & Das, S. (2015). Poly‐glutamic acid (PGA)‐structure, synthesis, genomic organization and its application: a review. International Journal of Pharmaceutical Sciences and Research, 6(6), 2258.
115 Nishino, T., & Morikawa, K. (2002). Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors. Oncogene, 21(58), 9022–9032.
116 Okano,