ТОП просматриваемых книг сайта:
Phosphors for Radiation Detectors. Группа авторов
Читать онлайн.Название Phosphors for Radiation Detectors
Год выпуска 0
isbn 9781119583387
Автор произведения Группа авторов
Жанр Отраслевые издания
Издательство John Wiley & Sons Limited
3 3. Yukihara, E.G. and McKeever, S.W.S. (2011). Optically Stimulated Luminescence: Fundamentals and Applications. New York: Wiley.
4 4. Mckeever, S.W.S. (1985). Thermoluminescence of Solids. Cambridge: Cambridge University Press.
5 5. Schulman, J.H., Ginther, R.J., and Klick, C.C. (1951). Dosimetry of X‐rays and gamma‐rays by radiophotoluminescence. J. Appl. Phys. 22: 1479–1487.
6 6. Hofstadter, R. (1948). Alkali halide scintillation counters. Phys. Rev. 74: 100–101.
7 7. Weber, M.J. and Monchamp, R.R. (1973). Luminescence of Bi4Ge3O12: spectral and decay properties. J. Appl. Phys. 44: 5495–5499.
8 8. Laval, M., Moszyński, M., Allemand, R. et al. (1983). Barium fluoride – inorganic scintillator for subnanosecond timing. Nucl. Instrum. Meth. Phys. Res. 206: 169–176.
9 9. Jahn, A., Sommer, M., and Henniger, J. (2014). OSL efficiency for BeO OSL dosimeters. Radiat. Meas. 71: 104–107.
10 10. McElhaney, S.A., Ramsey, J.A., Bauer, M.L. et al. (1990). A ruggedized ZnS(Ag)/epoxy alpha scintillation detector. Nucl. Instrum. Methods Phys. Res. A. 299: 111–114.
11 11. Yanagida, T., Fujimoto, Y., Miyamoto, M. et al. (2014). Optical and scintillation properties of Cd doped ZnO film. Jpn. J. Appl. Phys. 53: 02BC13.
12 12. Kaneko, J.H., Izaki, K., Toui, K. et al. (2016). An alpha particle detector based on a GPS mosaic scintillator plate for continuous air monitoring in plutonium handling facilities. Radiat. Meas. 93: 13–19.
13 13. Maekawa, T., Sumita, A., and Makino, S. (1998). Thin Beta‐ray detectors using plastic scintillator combined with wavelength‐shifting fibers for surface contamination monitoring. J. Nucl. Sci. Technol. 35: 886–894.
14 14. Tzolov, M.B., Barbi, N.C., Bowser, C.T. et al. (2018). First‐surface scintillator for low accelerating voltage scanning electron microscopy (SEM) imaging. Microsc. Microanal. 24: 488–496.
15 15. Tanaka, H.K.M. and Yokoyama, I. (2008). Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido – contact between high‐energy physics and volcano physics. Proc. Jpn. Acad. Ser. B. 84: 107–116.
16 16. Yanagida, T., Fujimoto, Y., Yamanoi, K. et al. (2012). Optical and scintillation properties of bulk ZnO crystal. Phys. Status Solidi C 9: 2284–2287.
17 17. Yanagida, T., Fujimoto, Y., and Koshimizu, M. (2014). Evaluation of scintillation properties of GaN, e‐J. Surf. Sci. Nanotechnol. 12: 396–399.
18 18. Yanagida, T., Okada, G., Kato, T. et al. (2016). Fast and high light yield scintillation in Ga2O3 semiconductor material. Appl. Phys. Exp. 9: 042601‐1‐042601‐4.
19 19. Shendrik, R.Y., Radzhabov, A., and Nepomnyashchikh, A.I. (2013). Scintillation properties of SrF2 and SrF2‐Ce3+ crystals. Tech. Phys. Lett. 39: 587–590.
20 20. Mikhailik, V.B., Kraus, H., Imber, J. et al. (2006). Scintillation properties of pure CaF2. Nucl. Instrum. Methods Phys. Res. A. 566: 522–525.
21 21. Itoh, M. and Kamada, M. (2001). Comparative study of auger‐free luminescence and valence‐band photoemission in wide‐gap materials. J. Phys. Soc. Japan 70: 3446–3451.
22 22. Yanagida, T., Kawaguchi, N., Fujimoto, Y. et al. (2010). Growth and scintillation properties of BaMgF4. Nucl. Instrum. Methods Phys. Res. A. 621: 473–477.
23 23. Moszynski, M., Allemand, R., Odru, M.L.R. et al. (1983). Recent progress in fast timing with CsF scintillators in application to time‐of‐flight positron tomography in medicine. Nucl. Instrum. Methods Phys. Res. Sect. A. 205: 239–249.
24 24. Yahaba, N., Koshimizu, M., Yan, S. et al. (2014). X‐ray detection capability of a Cs2ZnCl4 single‐crystal scintillator. Appl. Phys. Exp. 7: 062602‐1‐062602‐4.
25 25. Schotanus, P., van Eijk, C.W.E., Hollander, R.W. et al. (1985). Temperature dependence of BaF2 scintillation light yield. Nucl. Instrum. Methods Phys. Res. A. 238: 564–565.
26 26. Yanagida, T., Fujimoto, Y., Koshimizu, M. et al. (2015). Scintillation properties of CdF2 crystal. J. Lumin. 157: 293–296.
27 27. Anderson, D.F. (1989). Properties of the high‐density scintillator cerium fluoride. IEEE Trans. Nucl. Sci. 36: 137–140.
28 28. García‐Toraño, E., Caro, B., Peyrés, V. et al. (2016). Characterization of a CeBr3 detector and application to the measurement of some materials from steelworks. Nucl. Instrum. Methods Phys. Res. A. 837: 63–68.
29 29. Arai, M., Fujimoto, Y., Koshimizu, M. et al. (2020). Scintillation and photoluminescence properties of (Tl1−xAx)MgCl3 (where a = alkali metal). J. Alloys Compds 823: 153871.
30 30. Fujimoto, Y., Koshimizu, M., Yanagida, T. et al. (2016). Thallium magnesium chloride: a high light yield, large effective atomic number, intrinsically activated crystalline scintillator for X‐ray and gamma‐ray detection. Jpn. J. Appl. Phys. 55: 090301‐1‐090301‐3.
31 31. Kato, T., Okada, G., and Yanagida, T. (2016). Optical, scintillation and dosimeter properties of MgO transparent ceramic and single crystal. Ceram. Int. 42: 5617–5622.
32 32. Futami, Y., Yanagida, T., and Fujimoto, Y. (2014). Optical, dosimetric, and scintillation properties of pure sapphire crystals. Jpn. J. Appl. Phys 53: 02BC12.
33 33. Haas, J.T.M.d. and Dorenbos, P. (2008). Advances in yield calibration of scintillators. IEEE Trans. Nucl. Sci. 55: 1086–1092.
34 34. Masai, H., Yamada, Y., Okumura, S. et al. (2015). Photoluminescence of monovalent indium centres in phosphate glass. Sci. Rep. 5: 13646.
35 35. Masai, H., Yanagida, T., Fujimoto, Y. et al. (2012). Scintillation property of rare earth‐free SnO‐doped oxide glass. Appl. Phys. Lett. 101: 191906.
36 36. Kato, T., Okada, G., and Yanagida, T. (2016). Optical, scintillation and dosimeter properties of MgO transparent ceramic doped with Mn2+. J. Ceram. Soc. Jpn. 124: 559–563.
37 37. Kato, T., Okada, G., and Yanagida, T. (2016). Optical, scintillation and dosimeter properties of MgO translucent ceramic doped with Cr3+. Opt. Mater. 54: 134–138.
38 38. Grabmaier, B.C., Rossner, W., Berthold, T. et al. (eds.) (1996). Inorganic Scintillators and their Application, 29–35. Delft University Press.
39 39. Seferis, I., Michail, C., Valais, I. et al. (2014). Light emission efficiency and imaging performance of Lu2O3:Eu nanophosphor under X‐ray radiography conditions: comparison with Gd2O2S:Eu. J. Lumin. 151: 229–234.
40 40. Melcher, C.L. and Schweitzer, J.S. (1992). Cerium‐doped lutetium oxyorthosilicate – a fast, efficient new scintillator. IEEE Trans. Nucl. Sci. 39: 502–505.
41 41. Pidol, L., Kahn‐Harari, A., Viana, B. et al. (2004). High efficiency of lutetium silicate scintillators, Ce‐doped LPS, and LYSO crystals. IEEE Trans. Nucl. Sci. 51: 1084, 1087.
42 42. Kamada, K., Endo, T., Tsutumi, K. et al. (2011). Composition engineering in cerium‐doped (Lu,Gd)3(Ga,Al)5O12 single‐crystal scintillators. Cryst. Growth Des. 11: 4484–4490.
43 43. Yanagida, T., Itoh, T., Takahashi, H. et al. (2007). Improvement of ceramic YAG(Ce) scintillators to (YGd)3Al5O12(Ce) for gamma‐ray detectors. Nucl. Instrum. Methods Phys. Res. A. 579: 23–26.
44 44. Baryshevsky, V.G., Korzhik, M.V., Moroz, V.I. et al. (1991). YAlO3 – Ce‐fast‐acting scintillators for detection of ionizing‐radiation. Nucl. Instrum. Methods A 58: 291–293.
45 45. van Loef, E.V.D., Dorenbos, P., van Eijk, C.W.E. et al. (2002). Scintillation properties of LaBr3: Ce3+ crystals: fast, efficient and high‐energy‐resolution scintillators. Nucl. Instrum. Methods A 486: 254–258.
46 46. Combes, C.M., Dorenbos, P., van Eijk, C.W.E. et al. (1999). Optical and scintillation properties of pure and Ce3+‐doped Cs2LiYCl6 and Li3YCl6: Ce3+ crystals. J. Lumin. 82: 299–305.
47 47. Ogino, H., Yoshikawa, A., and Nikl, M. (2006).