Аннотация

Metabolism includes various pathways of chemical reactions; understanding these pathways leads to an improved knowledge of the causes, preventions, and cures for human diseases. Medical Biochemistry: Human Metabolism in Health and Disease provides a concise yet thorough explanation of human metabolism and its role in health and diseases. Focusing on the physiological context of human metabolism without extensive consideration of the mechanistic principles of underlying enzymology, the books serves as both a primary text and resource for students and professional in medical, dental, and allied health programs.

Аннотация

A comprehensive review of current thinking on the biosynthesis, function and evolution of secondary metabolites in animals, plants and microorganisms. Examines the traditional context of secondary metabolites as natural products having no obvious part to play in the producing organism's life cycle. Covers issues related to genetic and antibiotic applications.

Аннотация

The Novartis Foundation Series is a popular collection of the proceedings from Novartis Foundation Symposia, in which groups of leading scientists from a range of topics across biology, chemistry and medicine assembled to present papers and discuss results. The Novartis Foundation, originally known as the Ciba Foundation, is well known to scientists and clinicians around the world.

Аннотация

An updated, practical guide to bioinorganic chemistry Bioinorganic Chemistry: A Short Course, Second Edition provides the fundamentals of inorganic chemistry and biochemistry relevant to understanding bioinorganic topics. Rather than striving to provide a broad overview of the whole, rapidly expanding field, this resource provides essential background material, followed by detailed information on selected topics. The goal is to give readers the background, tools, and skills to research and study bioinorganic topics of special interest to them. This extensively updated premier reference and text: Presents review chapters on the essentials of inorganic chemistry and biochemistry Includes up-to-date information on instrumental and analytical techniques and computer-aided modeling and visualization programs Familiarizes readers with the primary literature sources and online resources Includes detailed coverage of Group 1 and 2 metal ions, concentrating on biological molecules that feature sodium, potassium, magnesium, and calcium ions Describes proteins and enzymes with iron-containing porphyrin ligand systems-myoglobin, hemoglobin, and the ubiquitous cytochrome metalloenzymes-and the non-heme, iron-containing proteins aconitase and methane monooxygenase Appropriate for one-semester bioinorganic chemistry courses for chemistry, biochemistry, and biology majors, this text is ideal for upper-level undergraduate and beginning graduate students. It is also a valuable reference for practitioners and researchers who need a general introduction to bioinorganic chemistry, as well as chemists who want an accessible desk reference.

Аннотация

This is the premier, single-source reference on redox biochemistry, a rapidly emerging field. This reference presents the basic principles and includes detailed chapters focusing on various aspects of five primary areas of redox biochemistry: antioxidant molecules and redox cofactors; antioxidant enzymes; redox regulation of physiological processes; pathological processes related to redox; and specialized methods. This is a go-to resource for professionals in pharmaceuticals, medicine, immunology, nutrition, and environmental fields and an excellent text for upper-level students.

Аннотация

Recent advances in molecular and biophysical techniques, particularly fluorescence and live cell imaging, are revolutionizing the study of cell motility. New bioprobes not only reveal simple intracellular localization, but also contain details of post-translational modifications, conformational state and protein-protein interactions. Coupling these insights with complementary advances in genetic and biochemical methods is enabling scientists to understand the processes involved in cell motility – from molecular motors to cell movements in vivo in a range of organisms and cell types. This book features landmark essays that provide an up to date and fascinating account of current research and concepts in cell motility.These cover the roles of molecular motors that drive movement and their interactions with the cytoskeleton as well as membrane dynamics that allow cells to change shape and to move. Cell motility plays a key role in development – there are chapters on the genetics of cell migration, the regulation of contact repulsion in growth cones, and the progression from cell migration to cell-cell adhesion. Cell motility is directional – experts describe the molecules that regulate chemotaxis, allowing cells to migrate along pathways specified by chemical gradients. Finally, cell motility can be perturbed by mutation–metastasis occurs when cells lose their normal intercellular interactions and invade other tissue types. All these processes are regulated by signals from the environment, including other tissues in the body, and the various molecules that transmit and transduce these signals are discussed. This book is a 'must read' for cell biologists working in a variety of fields, from development to wound healing, at all levels – post-doctoral fellows, post-graduate students and lab technicians. It is also stimulating reading for molecular and developmental biologists, biophysicists and biochemists.

Аннотация

Retinal dystrophies are the major causes of incurable blindness in the Western world. Our insight into their aetiology has improved remarkably over the past decade and a number of key genes have been identified. Together with a more detailed understanding of disease processes, this knowledge is stimulating new approaches to therapeutic strategies involving gene therapy, growth factors and retinal cell transplantation. Molecular genetic studies have provided detailed information on the pathogenesis of retinal dystrophies. An important proof of principle that gene therapy holds great promise for the treatment of these conditions was demonstrated in the rds mouse: introduction of a functional copy of the peripherin gene subretinally resulted in complete rescue of rod outer segment structure. Novel approaches are being developed based on the manipulation of biochemical pathways that previously were not considered relevant to these diseases. For example, renewed interest in retinal dystrophy pathogenesis led to the successful use of high dose vitamin A treatment in Sorsby fundus dystrophy. This important new book covers all aspects of retinal dystrophies from the molecular and developmental biology of these disorders to possible therapeutic approaches, with special reference to gene therapy. Specific chapters deal with the molecular genetics of gene therapies, clinical genetic studies, molecular and cellular mechanisms of the development of the disease, functional genomics of retinal diseases, animal models of retinal dystrophies, and finally with studies on gene therapeutic approaches to correcting the disorder. With contributions by many of the leading researchers worldwide, this book is likely to be an important milestone in this rapidly developing field.

Аннотация

Understanding stem cells at the molecular level is essential to understanding their behaviour in a physiological context. This volume in our acclaimed Novartis Foundation series features animated discussion from the world’s experts in this topic on the important ethical issues that are raised by research on stem cells. They review the various regulatory regimes, which apply in different countries – a key factor in determining where future stem cell research is carried out. Potential clinical applications covered in the book include the production of cardiomyocytes to replace damaged heart tissue, the production of insulin-producing cells for patients with diabetes, and the generation of neurons for the treatment of patients with Parkinson’s disease or spinal cord injury. Particular attention is paid to the factors that maintain stem cells in a pluripotent state or which drive them to create differentiated and lineage-committed cells in vitro and in vivo. Nuclear reprogramming, the process by which a nucleus acquires developmental potential, is covered here as well. It is relevant to stem cell research generally, and also to research on the cloning of animals by nuclear transfer. This book is an essential purchase for all those engaged in stem cell research, whether in the laboratory, the clinic or the regulatory authorities. From the reviews: «…this book provides: a comprehensive overview of current issues in stem cell research, with contributions from leading figures…» —BRITISH SOCIETY OF CELL BIOLOGY

Аннотация

Written by a team of international researchers and teachers at the cutting edge of chemical biology research, this book provides an exciting, comprehensive introduction to a wide range of chemical and physical techniques with applications in areas as diverse as molecular biology, signal transduction, drug discovery and medicine. Techniques include: Cryo-electron microscopy, atomic force microscopy, differential scanning calorimetry in the study of lipid structures, membrane potentials and membrane probes, identification and quantification of lipids using mass spectroscopy, liquid state NMR, solid state NMR in biomembranes, molecular dynamics, two dimensional infra-red studies of biomolecules, single and two-photon fluorescence, optical tweezers, PET imaging and chemical genetics. KEY FEATURES: a unique guide to the rapidly evolving, interdisciplinary field of chemical biology. adopts a molecular structure for maximum flexibility. addresses relevant, topical chemical biological questions throughout. includes stunning illustrations. associates website with PowerPoint slides of figures within the book. Chemical Biology: Techniques and Applications provides an invaluable resource for final year undergraduate and post graduate bioscience and biomedical students and pharmaceutical researchers with an interest in this fascinating, and ever changing field.

Аннотация

Navigate the complexities of biochemical thermodynamics with Mathematica(r) Chemical reactions are studied under the constraints of constant temperature and constant pressure; biochemical reactions are studied under the additional constraints of pH and, perhaps, pMg or free concentrations of other metal ions. As more intensive variables are specified, more thermodynamic properties of a system are defined, and the equations that represent thermodynamic properties as a function of independent variables become more complicated. This sequel to Robert Alberty's popular Thermodynamics of Biochemical Reactions describes how researchers will find Mathematica(r) a simple and elegant tool, which makes it possible to perform complex calculations that would previously have been impractical. Biochemical Thermodynamics: Applications of Mathematica(r) provides a comprehensive and rigorous treatment of biochemical thermodynamics using Mathematica(r) to practically resolve thermodynamic issues. Topics covered include: * Thermodynamics of the dissociation of weak acids * Apparent equilibrium constants * Biochemical reactions at specified temperatures and various pHs * Uses of matrices in biochemical thermodynamics * Oxidoreductase, transferase, hydrolase, and lyase reactions * Reactions at 298.15K * Thermodynamics of the binding of ligands by proteins * Calorimetry of biochemical reactions Because Mathematica(r) allows the intermingling of text and calculations, this book has been written in Mathematica(r) and includes a CD-ROM containing the entire book along with macros that help scientists and engineers solve their particular problems.