ТОП просматриваемых книг сайта:
Quantitative Applications in the Social Sciences
Скачать книги из серии Quantitative Applications in the Social SciencesАннотация
David Knoke and Song Yang's <strong>Social Network Analysis, Third Edition</strong> <span>provides a concise introduction to the concepts and tools of social network analysis. The authors convey key material while at the same time minimizing technical complexities. The examples are simple: sets of 5 or 6 entities such as individuals, positions in a hierarchy, political offices, and nation-states, and the relations between them include friendship, communication, supervision, donations, and trade. The new edition</span> reflects developments and changes in practice over the past decade. The authors also describe important recent developments in network analysis, especially in the fifth chapter. Exponential random graph models (ERGMs) are a prime example: when the second edition was published, P* models were the recommended approach for this, but they have been replaced by ERGMs. Finally, throughout the volume, the authors comment on the challenges and opportunities offered by internet and social media data.
Multidimensional Item Response Theory - Wes Bonifay
Quantitative Applications in the Social SciencesАннотация
Several decades of psychometric research have led to the development of sophisticated models for multidimensional test data, and in recent years, multidimensional item response theory (MIRT) has become a burgeoning topic in psychological and educational measurement. Considered a cutting-edge statistical technique, the methodology underlying MIRT can be complex, and therefore doesn’t receive much attention in introductory IRT courses. However author Wes Bonifay shows how MIRT can be understood and applied by anyone with a firm grounding in unidimensional IRT modeling. His volume includes practical examples and illustrations, along with numerous figures and diagrams. Multidimensional Item Response Theory includes snippets of R code interspersed throughout the text (with the complete R code included on an accompanying website) to guide readers in exploring MIRT models, estimating the model parameters, generating plots, and implementing the various procedures and applications discussed throughout the book.
Аннотация
Agent-based simulation has become increasingly popular as a modeling approach in the social sciences because it enables researchers to build models where individual entities and their interactions are directly represented. The Second Edition of Nigel Gilbert's Agent-Based Models introduces this technique; considers a range of methodological and theoretical issues; shows how to design an agent-based model, with a simple example; offers some practical advice about developing, verifying and validating agent-based models; and finally discusses how to plan an agent-based modelling project, publish the results and apply agent-based modeling to formulate and evaluate social and economic policies. A website to accompany the book includes an annotated exemplar model using NetLogo .
Аннотация
A firm knowledge of factor analysis is key to understanding much published research in the social and behavioral sciences. Exploratory Factor Analysis by W. Holmes Finch provides a solid foundation in exploratory factor analysis (EFA), which along with confirmatory factor analysis, represents one of the two major strands in this field. The book lays out the mathematical foundations of EFA; explores the range of methods for extracting the initial factor structure; explains factor rotation; and outlines the methods for determining the number of factors to retain in EFA. The concluding chapter addresses a number of other key issues in EFA, such as determining the appropriate sample size for a given research problem, and the handling of missing data. It also offers brief introductions to exploratory structural equation modeling, and multilevel models for EFA. Example computer code, and the annotated output for all of the examples included in the text are available on an accompanying website.
Generalized Linear Models for Bounded and Limited Quantitative Variables - Michael Smithson
Quantitative Applications in the Social SciencesАннотация
This book introduces researchers and students to the concepts and generalized linear models for analyzing quantitative random variables that have one or more bounds. Examples of bounded variables include the percentage of a population eligible to vote (bounded from 0 to 100), or reaction time in milliseconds (bounded below by 0) . The human sciences deal in many variables that are bounded. Ignoring bounds can result in misestimation and improper statistical inference. Michael Smithson and Yiyun Shou's book brings together material on the analysis of limited and bounded variables that is scattered across the literature in several disciplines, and presents it in a style that is both more accessible and up-to-date. The authors provide worked examples in each chapter using real datasets from a variety of disciplines. The software used for the examples include R, SAS, and Stata. The data, software code, and detailed explanations of the example models are available on an accompanying website.
Аннотация
Gathering Social Network Data fills an important gap in the literature by focusing on methods for designing, collecting, and evaluating the data that are the subject of these analytic techniques. Author jimi adams draws on his extensive teaching experience to provide a guide that can be used by both novice and more experienced researchers alike. The volume focuses on principles, with the goal of providing readers the tools needed to develop their own approach to gathering social network data.
Multilevel Structural Equation Modeling - Bruno Castanho Silva
Quantitative Applications in the Social SciencesАннотация
Multilevel Structural Equation Modeling by Bruno Castanho Silva, Constantin Manuel Bosancianu, and Levente Littvay serves as a minimally technical overview of multilevel structural equation modeling (MSEM) for applied researchers and advanced graduate students in the social sciences. As the first book of its kind, this title is an accessible, hands-on introduction for beginners of the topic. The authors predict a growth in this area, fueled by both data availability and also the availability of new and improved software to run these models. The applied approach, combined with a graphical presentation style and minimal reliance on complex matrix algebra guarantee that this volume will be useful to social science graduate students wanting to utilize such models.
Аннотация
Multilevel Modeling is a concise, practical guide to building models for multilevel and longitudinal data. Author Douglas A. Luke begins by providing a rationale for multilevel models; outlines the basic approach to estimating and evaluating a two-level model; discusses the major extensions to mixed-effects models; and provides advice for where to go for instruction in more advanced techniques. Rich with examples, the Second Edition expands coverage of longitudinal methods, diagnostic procedures, models of counts (Poisson), power analysis, cross-classified models, and adds a new section added on presenting modeling results. A website for the book includes the data and the statistical code (both R and Stata) used for all of the presented analyses.