Скачать книгу

and Golovleva, L.A. (2004). Bacterial degradation of chlorophenols: pathways, biochemical and genetic aspects. Journal of Environmental Science and Health 39: 333–351.

      18 18 Symons, Z.C. and Bruce, N.C. (2006). Bacterial pathways for degradation of nitroaromatics. Natural Product Reports 23: 845–850.

      19 19 Heidelberg, J.F., Paulsen, I.T., and Nelson, K.E. (2002). Genome sequence of the dissimilatory metal ion‐reducing bacterium Shewanella oneidensis. Nature Biotechnology 20: 1118–1123.

      20 20 Golyshin, P.N., Martins Dos Santos, V.A., and Kaiser, O. (2003). Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon‐degrading bacterium that plays a global role in oil removal from marine systems. Journal of Biotechnology 106: 215–220.

      21 21 Rabus, R. (2005). Functional genomics of an anaerobic aromatic‐degrading denitrifying bacterium, strain EbN1. Applied Microbiology and Biotechnology 68: 580–587.

      22 22 Zhao, B. and Poh, C.L. (2008). Insights into environmental bioremediation by microorganisms through functional genomics and proteomics. Proteomics 8: 874–881.

      23 23 Thompson, I.P., van der Gast, C.J., Ciric, L. et al. (2005). Bioaugmentation for bioremediation: the challenge of strain selection. Environmental Microbiology 7: 909–915.

      24 24 Vinas, M., Sabate, J., Guasp, C. et al. (2005). Culture‐dependent and ‐independent approaches establish the complexity of a PAH‐degrading microbial consortium. Canadian Journal of Microbiology 51: 897–909.

      25 25 Dinkla, I.J., Gabor, E.M., and Janssen, D.B. (2001). Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the TOL (pWWO) plasmid. Environmental Microbiology 67: 3406–3412.

      26 26 Kim, H.J. and Graham, D.W. (2003). Effects of oxygen and nitrogen conditions on the transformation kinetics of 1,2‐dichloroethenes by Methylosinus trichosporium OB3b and its sMMOC mutant. Biodegradation 14: 407–414.

      27 27 Lovanh, N., Hunt, C.S., and Alvarez, P.J. (2002). Effect of ethanol on BTEX biodegradation kinetics: aerobic continuous culture experiments. Water Research 36: 3739–3746.

      28 28 Zhou, Q., Zhang, J., Fu, J. et al. (2008). Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta 606: 135–150.

      29 29 Purohit, H.J., Raje, D.V., Kapley, A. et al. (2003). Genomics tools in environmental impact assessment. Environmental Science and Technology 37: 356A–363A.

      30 30 Paul, D., Pandey, G., Meier, C. et al. (2006). Bacterial community structure of a pesticide‐contaminated site and assessment of changes induced in community structure during bioremediation. FEMS Microbiology Ecology 57: 116–127.

      31 31 Verma, J.P. and Jaiswal, D.K. (2016). Book review: advances in biodegradation and bioremediation of industrial waste. Frontiers in Microbiology 6: 1–2.

      32 32 Frutos, F.J.G., Pérez, R., Escolano, O. et al. (2012). Remediation trials for hydrocarbon‐contaminated sludge from a soil washing process: evaluation of bioremediation technologies. Journall of Hazardous Materials 199: 262–271.

      33 33 Smith, E., Thavamani, P., Ramadass, K. et al. (2015). Remediation trials for hydrocarbon‐contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques. International Biodeterioration and Biodegradation 101: 56–65.

      34 34 Fruchter, J. (2002). In situ treatment of chromium‐contaminated groundwater. Environmental Science and Technology 36: 464A–472A.

      35 35 Farhadian, M., Vachelard, C., Duchez, D. et al. (2007). In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresource Technology 99: 5296–5308.

      36 36 Jorgensen, K.S. (2007). In situ bioremediation. Advances in Applied Microbiology 61: 285–305.

      37 37 Carberry, J.B. and Wik, J. (2001). Comparison of ex situ and in situ bioremediation of unsaturated soils contaminated by petroleum. Journal of Environmental Science and Health 36: 1491–1503.

      38 38 Prpich, G.P., Adams, R.L., and Daugulis, A.J. (2006). Ex‐situ bioremediation of phenol‐contaminated soil using polymer beads. Biotechnology Letters 28: 2027–2031.

      39 39 Kim, S.J., Park, J.Y., Lee, Y.J. et al. (2005). Application of a new electrolyte circulation method for the ex situ electrokinetic bioremediation of a laboratory‐prepared pentadecane contaminated kaolinite. Journal of Hazardous Materials 118: 171–176.

      40 40 Bouwer, E., Durant, N., Wilson, L. et al. (1994). Degradation of xenobiotic compounds in situ: capabilities and limits. FEMS Microbiology Reviews 15: 307–317.

      41 41 Romantschuk, M., Sarand, I., and Petanen, T. (2000). Means to improve the effect of in‐situ bioremediation of contaminated soil: an overview of novel approaches. Environmental Pollution 107: 179–185.

      42 42 Mandelbaum, R.T., Shati, M.R., and Ronen, D. (1997). In situ microcosms in aquifer bioremediation studies. FEMS Microbiology Reviews 20: 489–502.

      43 43 Schmidt, B.F., Chao, J., Zhu, Z. et al. (1997). Signal amplification in the detection of single‐copy DNA and RNA by enzyme‐catalyzed deposition (CARD) of the novel fluorescent reporter substrate Cy3.29‐tyramide. Journal of Histochemistry and Cytochemistry 45: 365–373.

      44 44 Scow, K.M. and Hicks, K.A. (2005). Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Current Opinion in Biotechnology 16: 246–253.

      45 45 Janikowski, T.B., Velicogna, D., Punt, M. et al. (2002). Use of a two‐phase partitioning bioreactor for degrading polycyclic aromatic hydrocarbons by a Sphingomonas sp. Applied Microbiology and Biotechnology 59: 368–376.

      46 46 Di Gennaro, P., Collina, E., Franzetti, A. et al. (2005). Bioremediation of diethylhexyl phthalate contaminated soil: a feasibility study in slurry‐ and solid‐phase reactors. Environmental Science and Technology 39: 325–330.

      47 47 Omenn, G.S. (1992). Environmental biotechnology: biotechnology solutions for a global environmental problem, hazardous chemical wastes. Asia Pacific Journal of Public Health 6: 40–45.

      48 48 Robles‐Gonzalez, I.V., Fava, F., and Poggi‐Varaldo, H.M. (2008). A review on slurry bioreactors for bioremediation of soils and sediments. Microbial Cell Factories 7: 5–17.

      49 49 Kao, C.M., Chen, S.C., Wang, J.Y. et al. (2003). Remediation of PCE‐contaminated aquifer by an in situ two‐layer biobarrier: laboratory batch and column studies. Water Resources 37: 27–38.

      50 50 Glover, K.C., Munakata‐Marr, J., and Illangasekare, T.H. (2007). Biologically enhanced mass transfer of tetrachloroethene from DNAPL in source zones: experimental evaluation and influence of pool morphology. Environmental Science and Technology 41: 1384–1389.

      51 51 El Fantroussi, S. and Agathos, S.N. (2005). Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Current Opinions in Microbiolgy 8: 268–275.

      52 52 van der Gast, C.J., Whiteley, A.S., and Thompson, I.P. (2004). Temporal dynamics and degradation activity of a bacterial inoculum for treating waste metal‐working fluid. Environmental Microbiology 6: 254–263.

      53 53 Roane, T.M., Josephson, K.L., and Pepper, I.L. (2001). Dual‐bioaugmentation strategy to enhance remediation of co‐contaminated soil. Applied Environmental Microbiology 67: 3208–3215.

      54 54 Ledin, M. (2000). Accumulation of metals by microorganisms – processes and importance for soil systems. Earth Science Reviews 51: 1–31.

      55 55 Rahman, K.S.M., Banat, I.M., Thahira, J. et al. (2002). Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith, and rhamnolipid biosurfactant. Bioresource Technology 81: 25–32.

      56 56 Nyer, E.K., Payne, F., and Suthersan, S. (2002). Environment vs. bacteria or let's play “name that bacteria”. Ground Water Monitoring and Remediation 23: 36–45.

      57 57 Alisi, C., Musella, R., Tasso, F. et al. (2009). Bioremediation of diesel oil in a cocontaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance.

Скачать книгу