Скачать книгу

coefficients of hydrodynamic bearings (linear and non‐linear). The range of applicability of various calculation methods was determined based on measurements made for a rotating machine equipped with hydrodynamic bearings with clearly non‐linear operating characteristics.

      Experimental research was carried out with the use of the impulse method, on the basis of which dynamic parameters of hydrodynamic bearings were determined. The applied method with a linear calculation algorithm allows the determination of stiffness and damping coefficients and the determination of mass coefficients in one algorithm. The stiffness and damping coefficients cannot be determined directly, thus indirect calculation methods are used. The mass of the rotor is a directly measurable parameter. Indirectly calculated mass coefficients can be compared with the known mass of the rotor. On this basis, it is possible to make preliminary estimations of the correctness of the results obtained.

      As part of the study, the sensitivity analysis of the aforementioned experimental method was carried out with the use of a model created in Samcef Rotors software. The influence of unbalance, displacement of measuring sensors, and various variants of driving force were analyzed. Based on experimental research, dynamic coefficients of hydrodynamic bearings in a wide range of rotational speeds, taking into account resonance speeds and higher speeds, were determined. They were verified using Abaqus software.

      I would like to thank all employees of the Turbine Dynamics and Diagnostics Department of the Polish Academy of Sciences for their kindness, for the atmosphere of friendship that they surrounded me with throughout the entire period of work, and for the fact that I could always count on their support and research experience. In particular, I would like to express my gratitude to Professor Grzegorz Żywica and Professor Jan Kiciński.

       Łukasz Breńkacz

      Gdańsk, November 2020

      Symbols

       β i,kdimensionless damping coefficients of lubricating film, i,k = x,y γ i,kdimensionless stiffness coefficients of lubricating film, i,k = x,y μ dynamic viscosity of oil, N·s/m2 = Pa·s μ o oil viscosity at temperature T, N·s/m2 = Pa·sΠdimensionless hydrodynamic pressure, Π = p(ΔR/R)2/μΩΠ*pressure at static equilibrium point σ standard deviation τ dimensionless time τ = ωt ψ angular coordinate

, rad, angles defining position of outlet and inlet edges of lubricating pockets ω frequency, rad/s, rotational speed, rpmΩjournal angular velocity, rad/s

,
disturbing parametersZ matrix of dynamic coefficients of bearings

      The book is accompanied by a companion website:

      www.wiley.com/go/brenkacz/bearingdynamiccoefficients

      The website includes:

       Computational codes

       Recordings

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SP8UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAAccAgAAAgAA ADhCSU0EJQAAAAAAEOjxXPMvwRihontnrcVk1bo4QklNBDoAAAAAAOUAAAAQAAAAAQAAAAAAC3By aW50T3V0cHV0AAAABQAAAABQc3RTYm9vbAEAAAAASW50ZWVudW0AAAAASW50ZQAAAABDbHJtAAAA D3ByaW50U2l4dGVlbkJpdGJvb2wAAAAAC3ByaW50ZXJOYW1lVEVYVAAAAAEAAAAAAA9wcmludFBy b29mU2V0dXBPYmpjAAAADABQAHIAbwBvAGYAIABTAGUAdAB1AHAAAAAAAApwcm9vZlNldHVwAAAA AQAAAABCbHRuZW51bQAAAAxidWlsdGluUHJvb2YAAAAJcHJvb2ZDTVlLADhCSU0EOwAAAAACLQAA ABAAAAABAAAAAAAScHJpbnRPdXRwdXRPcHRpb25zAAAAFwAAAABDcHRuYm9vbAAAAAAAQ2xicmJv b2wAAAAAAFJnc01ib29sAAAAAABDcm5DYm9vbAAAAAAAQ250Q2Jvb2wAAAAAAExibHNib29sAAAA

Скачать книгу