Скачать книгу

46(5), 857–880. https://doi:10.1111/j.1752‐1688.2010.00482.x

      37 Hoffmann, C.C., Kjaergaard, C., Uusi‐Kamppa, J., Hansen, H.C., & Kronvang, B. (2009). Phosphorus retention in riparian buffers: Review of their efficiency. Journal of Environmental Quality, 38(5), 1942–1955. https://doi:10.2134/jeq2008.0087

      38 House, W.A. (2003). Geochemical cycling of phosphorus in rivers. Applied Geochemistry, 18(5), 739–748. https://doi:10.1016/s0883‐2927(02)00158‐0

      39 Jarvie, H.P., Sharpley, A.N., Spears, B., Buda, A.R., May, L., & Kleinman, P.J. (2013). Water quality remediation faces unprecedented challenges from “legacy phosphorus.” Environmental Science and Technology, 47(16), 8997–8998. https://doi:10.1021/es403160a

      40 Kemp, W.M., Boynton, W.R., Adolf, J.E., Boesch, D.F., Boicourt, W.C., Brush, G., et al. (2005). Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Marine Ecology Progress Series, 303, 1–29. https://doi:10.3354/meps303001

      41 Kemp, W.M., Testa, J.M. Conley, D.J., Gilbert, D., & Hagy, J.D. (2009). Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences, 6(12), 2985–3008. https://doi:10.5194/bg‐6‐2985‐2009

      42 Langland, M.J. (2015). Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900–2012 (Open‐File Report 2014–1235, 18 pp.). Reston, VA: US Geological Survey.

      43 Langland, M.J., & Hainly, R.A. (1997). Changes in bottom‐surface elevations in three reservoirs on the lower Susquehanna River, Pennsylvania and Maryland, following the January 1996 flood—implications for nutrient and sediment loads to Chesapeake Bay (34 pp.). Lemoyne, PA: US Geological Survey.

      44 Linker, L.C., Batiuk, R.A., Shenk, G.W., & Cerco, C.F. (2013). Development of the Chesapeake Bay Watershed Total Maximum Daily Load allocation. Journal of the American Water Resources Association, 49(5), 986–1006. https://doi:10.1111/jawr.12105

      45 Linker, L.C., Dennis, R., Shenk, G.W., Batiuk, R.A., Grimm, J., & Wang, P. (2013). Computing atmospheric nutrient loads to the Chesapeake Bay watershed and tidal waters. Journal of the American Water Resources Association, 49(5), 1025–1041. https://doi:10.1111/jawr.12112

      46 Litke, D.W. (1999). Review of phosphorus control measures in the United States and their effects on water quality (43 pp.). Denver, CO: US Geological Survey.

      47 Marchetti, R., A. Provini, & G. Crosa (1989). Nutrient load carried by the River Po into the Adriatic Sea, 1968–1987. Marine Pollution Bulletin, 20(4), 168–172. https://doi:10.1016/0025‐326x(89)90487‐6.

      48 Marchina, C., Bianchini, G., Natali, C., Pennisi, M., Colombani, N., Tassinari, R., & Knoeller, K. (2015). The Po river water from the Alps to the Adriatic Sea (Italy): New insights from geochemical and isotopic (δ18D–δD) data. Environmental Science and Pollution Research International, 22(7), 5184–5203. https://doi:10.1007/s11356‐014‐3750‐6

      49 Meier, H.E.M., Eilola, K., Almroth‐Rosell, E., Schimanke, S., Kniebusch, M., Höglund, A., et al. (2018). Disentangling the impact of nutrient load and climate changes on Baltic Sea hypoxia and eutrophication since 1850. Climate Dynamics, 53(1–2), 1145–1166. https://doi:10.1007/s00382‐018‐4296‐y

      50 Milly, P.C., Dunne, K.A., & Vecchia, A.V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438(7066), 347–350. https://doi:10.1038/nature04312

      51 Moyer, D.L., Hirsch, R.M., & Hyer, K.E. (2012). Comparison of two regression‐based approaches for determining nutrient and sediment fluxes and trends in the Chesapeake Bay watershed (Scientific Investigations Report 2012‐5244, 118 pp.). Reston, VA: US Geological Survey.

      52 Murphy, R.R., Kemp, W.M., & Ball, W.P. (2011). Long‐term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuaries and Coasts, 34(6), 1293–1309. https://doi:10.1007/s12237‐011‐9413‐7

      53 Najjar, R.G., Pyke, C.R., Adams, M.B., Breitburg, D., Hershner, C., Kemp, M., et al. (2010). Potential climate‐change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science, 86(1), 1–20. https://doi:10.1016/j.ecss.2009.09.026

      54 New York State Department of Environmental Conservation (2007). New York State tributary strategy for Chesapeake Bay restoration.

      55 Palmeri, L., Bendoricchio, G., & Artioli, Y. (2005). Modelling nutrient emissions from river systems and loads to the coastal zone: Po River case study, Italy. Ecological Modelling, 184(1), 37–53. https://doi:10.1016/j.ecolmodel.2004.11.007

      56 Pennsylvania Department of Environmental Protection (2004). Pennsylvania's Chesapeake Bay tributary strategy.

      57 Pizzuto, J., Schenk, E.R., Hupp, C.R., Gellis, A., Noe, G., Williamson, E., et al. (2014). Characteristic length scales and time‐averaged transport velocities of suspended sediment in the mid‐Atlantic Region, USA. Water Resources Research, 50(2), 790–805. https://doi:10.1002/2013wr014485

      58 Rankinen, K., Keinänen, H., & Cano Bernal, J. E. (2016). Influence of climate and land use changes on nutrient fluxes from Finnish rivers to the Baltic Sea. Agriculture, Ecosystems and Environment, 216, 100–115. https://doi:10.1016/j.agee.2015.09.010

      59 Rice, K.C., & Jastram, J.D. (2014). Rising air and stream‐water temperatures in Chesapeake Bay region, USA. Climate Change, 128(1–2), 127–138. https://doi:10.1007/s10584‐014‐1295‐9

      60 Rice, K.C., Moyer, D.L., & Mills, A.L. (2017). Riverine discharges to Chesapeake Bay: Analysis of long‐term (1927–2014) records and implications for future flows in the Chesapeake Bay basin. Journal of Environmental Management, 204(Pt 1), 246–254. https://doi:10.1016/j.jenvman.2017.08.057

      61 Rinaldi, A. (2014). Fioriture algali in Adriatico. Il bacino padano‐adriatico tra sviluppo e scienza. Brossura cucita.

      62 Salvetti, R., Azzellino, A., & Vismara, R. (2006). Diffuse source apportionment of the Po river eutrophying load to the Adriatic sea: Assessment of Lombardy contribution to Po river nutrient load apportionment by means of an integrated modelling approach. Chemosphere, 65(11), 2168–2177. https://doi:10.1016/j.chemosphere.2006.06.012

      63 Sanford, W.E., & Pope, J.P. (2013). Quantifying groundwater's role in delaying improvements to Chesapeake Bay water quality. Environmental Science and Technology, 47(23), 13330–13338. https://doi:10.1021/es401334k

      64 Scroccaro, I., Ostoich, M., Umgiesser, G., De Pascalis, F., Colugnati, L., Mattassi, G., et al. (2010). Submarine wastewater discharges: dispersion modelling in the Northern Adriatic Sea. Environmental Science and Pollution Research International,

Скачать книгу