Скачать книгу

data in a flood, rather than a trickle. It was the first mission to Mars to provide images of the entire surface and record the full diversity of its landscapes. It was the first spacecraft to see a planet change dramatically beneath its eyes, to watch weather on another world. Mariner 9 revealed a Mars that was fascinating in its own right, rather that disappointing in the light of previous earthly expectations. And Mariner 9 allowed a small team of artists and artisans to make the first detailed, reliable maps of another planet.

      There were two big differences between Mariner 9 and its earlier siblings (two of which, Mariner 2 and Mariner 5, went to Venus, not Mars). One was that Mariner 9 had a largish rocket system on board, its cluster of spherical fuel tanks hiding the distinctive octagonal magnesium body that all the Mariner family shared. This engine was needed to slow the spacecraft down when it got to Mars, thus allowing it to go into orbit round its target rather than flying past it at breakneck speed, as the previous probes had. The other, less visible, difference was that Mariner 9 would have the opportunity to send back serious amounts of data.

      Mariner 4’s pictures each contained less than a thousandth of the data in a nine-inch aerial photograph. The frames were just 200 pixels wide by 200 pixels deep; the brightness of each pixel was recorded as six bits of data, providing sixty-four gradations of tone between black and white. The total amount of data in every frame (thirty kilobytes) was just a little bit more than the amount of disk-space taken up by an utterly empty document in the version of Word with which I am writing this book. In principle I could download the equivalent of Mariner 4’s entire twenty-two-image data-set from the Internet in a matter of seconds using my utterly unexceptional modem. In 1964, though, it took eight hours to get each picture back to JPL. The process was so slow that the waiting scientists printed out the numerical value for each pixel on a long ribbon of ticker tape, cut the ribbon into 200-number-long strips and then coloured each pixel in with chalk according to its numerical value. Every two and a half minutes another strip could be added to the picture. The first space-age image of Mars, taken by the first entirely digital camera ever built and transmitted over 170 million kilometres of empty space, was put together like an infant school painting-by-numbers project.

      By the time Mariner 6 and Mariner 7 flew past Mars in 1969, communications were far faster (though the on board tape recorders, which outweighed the cameras whose data they stored, were still a problem). Each of the 1969 Mariners returned a hundred times more data to earth than Mariner 4 had four years earlier. In 1971 Mariner 9 – with a data rate 2000 times that of Mariner 4 and a year in which to transmit, rather than a week – did 100 times better still. And this meant that the whole scale of the operation was different. The ‘television teams’ – so called because their instrument was basically a TV camera – on Mariners 4, 6 and 7 had been small: Leighton, who masterminded the camera design; a few other Caltech faculty members; some JPL people; and a few select outsiders, such as Mert Davies. But Mariner 9 was going to provide far more data than such a team could digest and the data were to be used not just for analytical science but for the practical business of mapping. Among other things, America was committed to landing robot probes on Mars to look for life in 1976. Those probes – the Vikings – needed landing sites, and choosing landing sites required maps.

      NASA would have been happy to make the maps itself. But in the mid-1960s Congress noticed that almost every government agency had its own map makers and decided that the money-hungry, fast-growing space agency would be an exception to this rule. So the mapping of the planets was instead made the duty of the United States Geological Survey. This was not entirely arbitrary; the USGS already had an astrogeology branch, headquartered in Flagstaff, Arizona, which was deeply involved in the study of the moon and was helping to train the Apollo astronauts. The USGS gave primary responsibility for its study of Mars to a team of five geologists, three from Flagstaff, two from the survey’s California centre in Menlo Park, south of San Francisco. The senior member of the USGS team was a man called Hal Masursky: in part because Murray was at the same time working on a mission to Venus and Mercury, Masursky became one of the television team’s two principal investigators. The other PI was a young man called Brad Smith, a highly rated expert on Mars as observed through telescopes who had yet to complete his PhD.

      Up to the point when he joined the astrogeology branch in the early 1960s, Hal Masursky’s career had not been stellar. He had never completed his Ph.D.; his terrestrial work had been uneventful. But Masursky became fascinated by the possibilities of geology on other worlds, and turned out to be a great success at it. The success lay not in his own scientific work – though he was a perceptive observer, his complete inability actually to write things up was something of a limitation – but in his ability to get things done within the sometimes bureaucratic world of space exploration and to explain these achievements to the world at large. Some of his colleagues considered him as vivid an off-the-cuff communicator as Carl Sagan.

      Hal was at the same time a bright spark and a consummate committee man. He was charming but dogged, willing to get down into the details of sequencing spacecraft manoeuvres and download times whenever necessary, but also keeping a clear eye on the overall objectives. His astrogeological life became in large part devoted to the teamwork necessary for planning and running space missions, and he played a role in almost every major mission of the 1970s and 1980s, making sure they would send back pictures geologists could make use of. If Hal was on a committee, a planetary scientist who learned the political ropes back then once told me, it would get things done; if he wasn’t on a committee, then you didn’t want to be on it either. It was probably not an important one, and it might well not get anywhere.

      Masursky was good at getting committees to work; in his personal life his gift for structure was less evident. Committee work meant he was endlessly travelling. (It’s said that at times he lived in Flagstaff without a car, preferring simply to rent one when he flew in just as he would anywhere else.) His ability to keep projects he was administering within budgets was famously poor. He was married at least four times, religious and passionate in argument. He was diabetic, but rather than accepting the discipline of managing the condition he let his team do so for him. Jurrie van der Woude, an image-processing specialist then at Caltech and later at JPL, remembers finding Masursky passed out on the floor of his office late one night during the Mariner 9 mission. Jurrie shouted for help and people came running – people already armed with candies and orange juice, because they knew what to expect. ‘From that point on I was part of the club. No matter where you went around the lab you’d carry orange juice with you. Nobody talked about it, but in press briefings there’d be four or five of us like secret servicemen, waiting and watching for the right time to bring him orange juice. He had this kind of a smile and every so often you’d realise that behind it he was just gone.’ Eventually diabetes took its toll; in the late 1980s Masursky sickened, dying in 1990. During his sad decline, he would occasionally elude his last, devoted wife and wander off to Flagstaff’s little airport, sure he should

Скачать книгу