Скачать книгу

the other hand, an arithmetician can quickly and competently work out that (789 × 2) + 1 = 1,579, without needing a calculator.

      The strongest arithmeticians can do much harder calculations, too. They can quickly work out in their head what 4/7 is as a percentage; can multiply 43 × 29 to get the exact answer; and can quickly figure out that in a limited-overs cricket match, if England require 171 runs in 31 overs they’ll need to score at a bit more than five and a half runs per over.

      There is, however, a huge amount of overlap between arithmetic and mathematics. Many arithmetical techniques and short cuts lead on to deep mathematical ideas, and most of the maths that is studied up until school-leaving age requires an element of arithmetic, even if it’s no more than basic multiplication and addition. Arithmetic and maths are both grounded in logical thinking, and both exploit the ability (and joy) of seeing patterns and connections.

      And yet, although arithmetic crops up everywhere, after the age of 16 it is very rarely studied. Almost without exception, public exams beyond 16 allow the use of a calculator, and most people’s arithmetical skills inevitably waste away after GCSE.

      A while ago, a friend who runs an engineering company was talking with some final-year engineering undergraduates about a design problem he was working on. ‘We have this pipe that has a cross-sectional area of 4.2 square metres,’ he said, ‘and the water is flowing through at about 2 metres per second, so how much water is flowing through the pipe per second?’ In other words, he was asking them what 4.2 × 2 equals. He was assuming that these bright, numerate students would come back instantly with ‘8.4’ or (since this was only a rough-and-ready estimate) ‘about 8’. To his dismay, all of them took out their calculators.

      Calculators have removed the need for us to do difficult arithmetic. And it’s certainly not essential for you to be a strong arithmetician to be able to make good estimates. But it helps.

      Can you quickly estimate the answer to each of these 10 calculations? If you get within (say) 5% of the right answer, you are already a decent estimator. And if you are able to work out exactly the right answers to most of them in your head, that’s a bonus, and you can call yourself an arithmetician.

      (a) A meal costs £7.23. You pay £10 in cash. How much change do you get?

      (b) Mahatma Gandhi was born in October 1869 and died in January 1948. On his last birthday, how old was he?

      (c) A newsagent sells 800 chocolate bars at 70p each. What are his takings?

      (d) Kate’s salary is £28,000. Her company gives her a 3% pay rise. What is her new salary?

      (e) You drive 144 miles and use 4.5 gallons of petrol. What is your petrol consumption in miles per gallon?

      (f) Three customers get a restaurant bill for £86.40. How much does each customer owe?

      (g) What is 16% of 25?

      (h) In an exam you get 38 marks out of a possible 70. What is that, to the nearest whole percentage?

      (i) Calculate 678 × 9.

      (j) What is the square root of 810,005 (to the nearest whole number)?

       Solutions

      ADDITION AND SUBTRACTION

      The classic written methods for arithmetic start at the right-hand (usually the units) column and work to the left. But when it comes to the sort of speedy calculations that are part of back-of-envelope thinking, it generally pays to work from the left instead.

      For example, take the sum: 349 + 257.

      You were probably taught to work it out starting from the units column at the right. The first step would be:

      9 + 7 = 16, write down the 6 and ‘carry’ the 1.2

      You then continue working leftwards:

      4 + 5 + 1 = 10, write down the 0 and ‘carry’ the 1; 3 + 2 + 1 = 6.

      So the calculation 349 + 257 starts with 300 + 200 = 500, then add 40 + 50 = 90, and finally add 7 + 9 = 16. The advantage of working from the left is that the very first step gives you a reasonable estimate of what the answer is going to be (‘it’s going to be 500 or so …’).

      A similar idea applies to subtraction. Using the standard written method, working from the right, 742 – 258 requires some ‘borrowing’ (maybe you used different language). Here’s the method my children learned at school:

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

iVBORw0KGgoAAAANSUhEUgAABLAAAAcUCAIAAADXJm39AAAACXBIWXMAAC4jAAAuIwF4pT92AAAH aWlDQ1BQaG90b3Nob3AgSUNDIHByb2ZpbGUAAHjalZVZVJMHHsX/35KVkEAIEJDlg7AbSEBkFQqE VfZVwJUkHxAJJCZhq2LpqIjiAlYsVRAVpI4riFAcl0pFK+JYgQq44AZapVgVR9SplnngzLEvnXPm Pv3OPee/PN0LQOcFh4aEoUEA+QU6TVJECJGekUnQhgEDFJhAA+csmVYNfy0EYHoIEACAQVdplERS n+958Fhz2DQvv641kcXNh/8thkyt0QFQewCgV05qZQC0agBYV6xT6wDgJQDwNClJEgAEB6Csz/kT S//EmvSMTABqJQDwcma5HgB40lluBQBeekYmMXv208+yQk3RrIeeBQAmGIM1uIAnBEIUJMNSyAUN lMFGqIF6aIFWOAOX4AbchnF4Ae8RDGEjfESAuCLeSAgSgyxCspA8pAgpRzYjtUgjchg5hZxHepFB ZBR5ikwhH1EaaohaoA6oGPVHw9AENBMlUTW6Gq1Aa9B69BDajn6P9qHD6Bj6Av2A0TFjzBYTYQuw KCwNk2Ma7AtsK7YHO4x1YZexm9g49hpHcUPcBhfjQXgCvgJX4+V4Db4fP4lfxH/GH+NvKXSKOUVI CaQkUGSUQkolZQ/lOKWbcpPylPKBakC1o/pQY6lZ1CJqFXUftYPaR31AnaaxaAKaLy2elk0ro+2k HaVdpN2hvabr0QV0f3oKPZ9eQW+kd9EH6JMMKoNg+DFSGSrGZsZBRjfjLuMdk8cUM2OZCmYFs4l5 gXmP+buemZ63XqqeTm+HXpveDb2XLA5LxIpnqVjbWa2sftaUvpH+fP00/RL93frn9O+zUbY9O4qt ZFezT7FH2B85NpxwTh6nhtPJuWuAGjgZxBsUGTQY9BhMGhoZ+hvKDbcYdhje49K47txM7nruce4t I9xIZJRptMGozWiUx+B58WS8at453oQx3zjcWGfcZDxggpiITVaYVJtcMHlpamOaZLrOtMP0Cd+M H80v47fyx8x

Скачать книгу