ТОП просматриваемых книг сайта:
Обыграй дилера: Победная стратегия игры в блэкджек. Эдвард Торп
Читать онлайн.Название Обыграй дилера: Победная стратегия игры в блэкджек
Год выпуска 1966
isbn 978-5-389-13943-5
Автор произведения Эдвард Торп
Жанр Учебная литература
Издательство Азбука-Аттикус
Мы утверждаем, что заведение имеет перед консервативным игроком преимущество, составляющее от 5 до 8 %. Доказательства этого утверждения проистекают из трех источников. Во-первых, мы провели эксперимент, в котором консервативную стратегию использовали в розыгрыше шести групп по 100 раздач в каждой. Число единиц, проигранных игроком, составило от 13 до 2 со средним значением, равным 7. Это хорошо согласуется с нашим результатом (от 5 до 8 %). Поскольку число раздач, равное 600, было выбрано заранее и без учета результатов предыдущих раздач, к этим данным применимы стандартные формулы математической теории вероятностей. Мы заключаем, что истинное значение преимущества заведения почти несомненно лежит между 3 и 11 %. Во-вторых, мы произвели расчеты (для таких низких жестких сумм остановки их сравнительно легко выполнить без использования компьютера), доказывающие, что истинное значение заведомо меньше 10 %. В-третьих, и это наиболее действенный аргумент, Болдуин и его соавторы оценивают преимущество заведения перед игроком, который останавливается на жестких 12, никогда не удваивает ставок и разделяет только пары тузов и восьмерок, в 4,25 % (мягкие суммы остановки в этой работе не приводятся). Можно показать, что разделение пар тузов и восьмерок добавляет к преимуществу игрока менее 1 %. Поправка на различные мягкие суммы остановки, если она вообще существует, также в целом составляет порядка 1 или 2 %. Таким образом, истинное значение по данным этого источника лежит в диапазоне от 5 или 6 до 8 %.
Забавную иллюстрацию невыгодности такой консервативной игры дает опыт «человека, который остриг своего парикмахера»[24], моего друга Джона Блаттнера, профессора математического факультета Колледжа штата в долине Сан-Фернандо[25].
Как-то раз Блаттнер разговорился со своим парикмахером о блэкджеке. Когда Блаттнер рассказал, что один его друг написал книгу о том, как постоянно выигрывать в блэкджек, парикмахер только фыркнул. «Ну, это просто, – сказал он. – Выиграть может кто угодно, надо только не перебирать» (то есть всегда останавливаться на жестких 12). Блаттнер тщетно пытался доказать парикмахеру, что он ошибается. В конце концов парикмахер уговорил Блаттнера сыграть с ним вечером в блэкджек. Блаттнер принес с собой 160 долларов. Они стали играть со ставками по 5 и 10 долларов, и парикмахер быстро проиграл такую же сумму. Он постоянно восклицал, что Блаттнер – самый везучий
24
Как мы увидим, эта история не лишена математической иронии. Следует объяснить читателю, далекому от математики, что речь идет о знаменитом парадоксе Бертрана Рассела. Предположим, что в некоем городке есть парикмахер, который стрижет тех, и только тех, кто не стрижет себя сам (предполагается, что каждого человека всегда стрижет один и тот же человек). Кто стрижет парикмахера? Если парикмахера стрижет кто-то другой, то парикмахера должен стричь парикмахер. Невозможно! Если же парикмахер стрижет себя сам, то парикмахер не может стричь парикмахера. Невозможно! Так кто же стрижет парикмахера?
25
С 1972 г. – Университет штата Калифорния в Нортридже. (