Скачать книгу

равно 3.14". Скорее всего, математик не будет уточнять, скажет просто π. Если очень попросите, то скажет, что "π примерно равно

      3.14".

      Но самый настоящий математик вам этой информации не выдаст и до последнего на вопрос: "Так чему же равно π?" – даже под страхом смерти будет настаивать на том, что π равно отношению длины окружности к ее диаметру (и конечной или периодической десятичной дробью не выражается).*/

      «Начала» практически до конца XIX века считаются образцом логических построений и предельной четкости изложения. Именно по образу и подобию начал строят свои книги Декарт, Ньютон, Спиноза (не только труды математические, но и труды философские), а также практически все математики с тех времен.

      Сначала идут определения. Например, определение окружности и круга, тупого, острого, прямого угла и т.д. Потом идут так называемые "Постулаты" (пять знаменитых постулатов Евклида нам позже встретятся в главе «Что такое неевклидовы геометрии?»), аксиомы. Постулаты – это высказывания, которые не нуждаются в доказательствах. Постулируется (допускается), что такие-то и такие-то утверждения верны. И из этих утверждений выводятся разные теоремы. Если мы изменим постулаты, то сможем выводить совершенно другие теоремы (Евклид этого еще не знал, но уже догадывался, перед постулатами он написал: "Допустим, что...."). Аксиомы – это тоже высказывания, не нуждающиеся в доказательствах, но обычно аксиомы не подлежат сомнению. Не подлежат смене. Собственно, слова "аксиома" и "постулат" – синонимы. Но в геометрии ("так исторически сложилось" – смешная фраза, но уж как есть) принято отделять аксиомы и постулаты.

      У Евклида к аксиомам отнесены как бы общематематические вещи (например: "равные одному и тому же равны между собой" – это, скорее, относится не к геометрии, а к определению слова "равны"; или "Половины одного и того же равны между собой" – а это тоже, скорее, не аксиома, а определение слова половина. Ну, и т.д.), а к постулатам уже вещи сугубо геометрические: "две любые точки можно соединить прямой", "из всякого центра и всяким раствором может быть описан круг" и т.д.

      У Евклида как излагаются определения, постулаты, так же и теоремы, но и разобрано много задач с решениями. Очень много среди них – задачи на построение чего-либо циркулем (правда, под циркулем Евклид понимал что-то чуть-чуть другое) и линейкой.

      /*Всем, кто хочет почувствовать себя Евклидом, я крайне рекомендую игру, которая называется Euclidea. Очень сложная, но и очень крутая! Задача №2 из Начал – это задача 6.5 из этой игры (возможно, в будущих версиях программы номер задачи изменится, конечно. Задача называется "Окружность заданного радиуса"). Вообще, в игре много задач из Начал.*/

      6.1

      А чего же в «Началах» не было?

      Все, да не все включил в книгу Евклид. Скажем, задачи на построение циркулем и линейкой он включает, а любые задачи на построение с помощью других инструментов – нет, не включает.

      Так в «Начала» Евклида не входят три знаменитые неразрешимые

Скачать книгу