ТОП просматриваемых книг сайта:
Введение в машинное обучение. Равиль Ильгизович Мухамедиев
Читать онлайн.Название Введение в машинное обучение
Год выпуска 2023
isbn
Автор произведения Равиль Ильгизович Мухамедиев
Издательство Автор
23
Под методом машинного обучения мы будем понимать реализацию алгоритма или некоторой модели вычислений, которая решает задачу классификации, регрессии или кластеризации с использованием «обучающихся» алгоритмов.
24
Taiwo Oladipupo Ayodele. Types of Machine Learning Algorithms // New Advances in Machine Learning. – 2010. – P. 19–48.
25
Hamza Awad Hamza Ibrahim et al. Taxonomy of Machine Learning Algorithms to classify realtime Interactive applications // International Journal of Computer Networks and Wireless Communications. – 2012. – Vol. 2. – № 1. – P. 69–73.
26
Muhamedyev R. Machine learning methods: An overview // CMNT. – 2015. – 19(6). – P. 14–29.
27
Goodfellow I. et al. Deep learning. – Cambridge: MIT press, 2016. – Т. 1. – № 2.
28
Nassif A. B. et al. Speech recognition using deep neural networks: A systematic review // IEEE Access. – 2019. – Т. 7. – С. 19143–19165.
29
Hastie T., Tibshirani R., Friedman J. Unsupervised learning. – New York: Springer, 2009. – P. 485–585.
30
Kotsiantis, Sotiris B., I. Zaharakis, and P. Pintelas. Supervised machine learning: A review of classification techniques // Emerging Artificial Intelligence Applications in Computer Engineering. – IOS Press, 2007. – P. 3–24.
31
Jain A. K., Murty M. N., Flynn P. J. Data clustering: A review // ACM computing surveys (CSUR). – 1999. – Т. 31. – № 3. – С. 264–323.
32
Wesam Ashour Barbakh, Ying Wu, Colin Fyfe. Review of Clustering Algorithms. Non-Standard Parameter Adaptation for Exploratory Data Analysis // Studies in Computational Intelligence. – 2009. – Vol. 249. – P. 7–28.
33
Mukhamediev R. I. et al. From Classical Machine Learning to Deep Neural Networks: A Simplified Scientometric Review //Applied Sciences. – 2021. – Т. 11. – №. 12. – С. 5541.
34
Мухамедиев Р. И. Методы машинного обучения в задачах геофизических исследований. – Рига, 2016. – 200 с. – ISBN 978-9934-14-876-7.
35
Дьяконов А. Г. Анализ данных, обучение по прецедентам, логические игры, системы WEKA, RapidMiner и MatLab (Практикум на ЭВМ кафедры математических методов прогнозирования): учебное пособие. – М.: Изд. отдел факультета ВМК МГУ им. М. В. Ломоносова, 2010.
36
Martin Fodslette Møller. A scaled conjugate gradient algorithm for fast supervised learning // Neural Networks. – 1993. – Vol. 6. – Issue 4. – P. 525–533.
37
Dong C. Liu, Jorge Nocedal. On the limited memory BFGS method for large scale optimization // Mathematical Programming. – 1989. – Vol. 45. – Issue 1–3. – P. 503–528.
38
Derivative of Cost Function for Logistic Regression. – https://medium.com/mathematics-behind-optimization-of-cost-function/derivative-of-log-loss-function-for-logistic-regression-9b832f025c2d
39
Warren S. McCulloch, Walter Pitts. A logical calculus of the ideas immanent in nervous activity // The bulletin of mathematical biophysics. – 1943. – Vol. 5. – Issue 4. – P. 115–133.
40
Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain // Psychological Review. – 1958. – Vol. 65 (6). – P. 386–408.
41
Minsky M. L., Papert S. A. Perceptrons: An Introduction to Computational Geometry. – MIT, 1969. – 252 p.
42
Marvin Minsky, Seymour Papert. Perceptrons, expanded edition. – The MIT Press, 1987. – 308 p.
43
Werbos P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. – Harvard University, 1974. – 38 p.
44
Werbos P. J. Backpropagation: past and future // IEEE International Conference on Neural Networks. – San Diego, 1988. – Vol. 1. – P. 343–353.
45
Нейрокомпьютеры: учеб. пособие для вузов. – М.: Изд-во МГТУ им. Н. Э. Баумана, 2004. – 320 с.
46
Галушкин А. И. Решение задач в нейросетевом логическом базисе // Нейрокомпьютеры: разработка, применение. – М.: Радиотехника, 2006. – № 2. – С. 49–71.
47
Ясницкий Л. Н. Введение в искусственный интеллект: учебное пособие для вузов. – М.: Академия, 2008. – 176 с.
48
Галушкин А. И. Нейронные сети: основы теории. – Горячая линия – Телеком, 2010. – 496 с.
49