Скачать книгу

before giving some conclusions about this or that element, which is recognized as the main one for the semiconductor element being created, it is worth considering this chemical compound according to its various parameters. In this case, the role of such a compound is played by cadmium telluride (Fig. 1), which is a binary compound of cadmium and tellurium, and is also considered a semiconductor of the 2-a and 6-b groups with a band gap at temperatures of 300 K at 1.49 eV.

      Fig. 1. Cadmium telluride crystal

      The use of this element is really popular at the moment when creating solar panels, ionizing radiation detectors and photodetectors, but the mathematical basis of these phenomena still requires consideration. This material, in its normal state, is solid with a molar mass of 240.01 g / mol and a density of 5.85 g / cm3, has a melting point of 1092 degrees Celsius after its formation with a cubic structure or a sphalerite structure, also popularly popular as zinc blende.

      In the formed material, the coefficient of linear thermal expansion is 5,9*10—6 1/ K when the temperature value reaches 293 K. The Young’s modulus of such a material reaches 52 Gpa with a Poisson’s ratio of 0.41. Another, for some cases, favorable moments is the circumstance of its transparency for infrared radiation from 830 nm, but negative if it is necessary to detect such classes of radiation. It should be noted that this radiation depends on an energy close to the band gap of the material of 1.5 eV at 300 K, which causes its transparency for this kind of radiation corresponding to 20 microns.

      Fig. 2. Shift of fluorescence spectra in cadmium telluride

      This element also has the property of fluorescence, but reaches its peak only at 790 nm. This law is effective only for massive crystals, but when their size decreases comparatively and can reach the state of reduction to quantum dots, the peak of fluorescence begins to shift by a certain value, being already in the ultraviolet range. Most of all, this dependence is personified by the fluorescence spectrum of cadmium telluride for various sizes, where the size of colloidal particles increases from about 2 to 20 nm, and some quantum well appears in the face of the reason for this peak shift (Fig. 2).

      Among the chemical properties of this compound, it is not worth saying quite a lot and it is quite enough to note that it is bad it dissolves in water, has the property of interacting even with weak acids with the release of hydrogen telluride and the formation of the corresponding salt, which is quite obvious.

      Based on all the presented physico-chemical descriptions of this compound, as well as finding compliance with the physico-mathematical laws of photovoltaic phenomena, it is possible in a comparative analysis to talk about the very favorable suitability of this material for the role of a semiconductor photovoltaic base for such devices with relatively high efficiency. But it is worth saying that further improvement of this technology is inevitable and requires more detailed further consideration.

      Used literature

      1. Bovin L. A and others . Physics of compounds a-2 b-6 / edited by A. N. Georgobiani, M. K. Sheinkman. – M.: Nauka, Gl. ed. Phys.-mat. Lit., 1986. – 319 p.

      2. Anselm, A. I. Introduction to the theory of semiconductors / A. I. Anselm. – L.: Nauka, 1978. – 616 p.

      3. Anselm, A. I. Introduction to the theory of semiconductors / A. I. Anselm. – M.: Lan, 2008. – 624 p.

      4. Anselm, A. I. Introduction to the theory of semiconductors / A. I. Anselm. – Moscow: Ogni, 1978. – 770 p.

      5. Atia, M. Geometry and physics of knots / M. Atia. – Moscow: SPb. [et al.]: Peter, 1995. – 963 p.

      6. Borisov, E. The key to the sun. Stories about semiconductors / E. Borisov, I. Pyatnova. – L.: Molodaya Gvardiya, 1997. – 304 p.

      7. Dunlap, U. Introduction to semiconductor physics / U. Dunlap. – M.: Publishing House of Foreign Literature, 2011. – 430 p.

      8. Zeldovich, Ya. B. Higher mathematics for beginners and its applications to physics / Ya. B. Zeldovich. – Moscow: RSUH, 1983. – 794 p.

      9. Zeldovich, Ya. B. Higher mathematics for beginning physicists and technicians / Ya. B. Zeldovich, I. M. Yaglom. – Moscow: IL, 1982. – 108 p.

      10. Ioffe, A. F. Selected works (volume 2). Radiation, electrons, semiconductors: monogr. / A. F. Ioffe. – Moscow: Nauka, 1976. – 552 p.

      11. Kurchatov, I. V. I. V. Kurchatov. Collection of scientific papers in 6 volumes. Volume 1. Early works. Dielectrics. Semiconductors / I. V. Kurchatov. – L.: Nauka, 2005. – 576 p.

      12. Ladyzhenskaya, O. A. Boundary value problems of mathematical physics / O. A. Ladyzhenskaya. – Moscow: Gostekhizdat, 1975. – 810 p.

      13. Levinstein, M. E. Acquaintance with semiconductors / M. E. Levinstein, G. S. Simin. – M.: The main editorial office of physical and mathematical literature of the publishing house "Nauka", 1984. – 240 p.

      14. Levinstein, M. E. Acquaintance with semiconductors / M. E. Levinstein, G. S. Simin. – M.: Institute of Computer Research, 2004. – 208 p.

      15. Mikhlin, S. G. Course of mathematical physics / S. G. Mikhlin. – Moscow: Higher School, 2005. – 947 p.

      16. New semiconductor devices: Chemistry, physics, semiconductor technology. – M.: Gostekhizdat, 1975. – 748 p.

      17. Ormont, B. F. Introduction to physical chemistry and crystal chemistry of semiconductors / B. F. Ormont. – M.: Higher School, 1975. – 490 p.

      18. Rectoris, K. Variational methods in mathematical physics and engineering / K. Rectoris. – Moscow: Higher School, 1985. – 363 p.

      19. Slater, J. Dielectrics. Semiconductors. Metals / J. Slater. – M.: Mir, 2001. – 648 p.

      20. Ugai, Ya. A. Introduction to semiconductor chemistry / Ya. A. Ugai. – M.: Higher School, 1975. – 302 p.

      21. Frank, F. Differential and integral equations of mathematical physics (part 2) / F. Frank, R. Mises. – Moscow: IL, 1990. – 467 p.

      THE USE OF ELECTROMAGNETIC FIELDS TO IMPROVE THE OVERALL EFFICIENCY OF PLANT GROWTH IN THE PHYSICO-BIOLOGICAL SENSE

      UDC 581.132

      Kadyrbergenov Fozil Kudratovich

      2nd year student of the Department of "Electronics and Instrumentation" of the Faculty of Computer Design Systems of the Fergana Polytechnic Institute

      Ferghana Polytechnic Institute, Ferghana, Uzbekistan

      Annotation. The development of various kinds of achievements in modern science leads to an acceleration of the process of determining a new kind of invention and the impact of one of the phenomena on others. The proof of this can be a technology that has never been mentioned, but is only now actively developing as a separate method, namely, the technology of accelerating plant growth through the influence of electromagnetic fields on them and on the soil occupied by them.

      Keywords: electromagnetic field, physico-biological processes, photosynthesis, growth acceleration, plants.

      Аннотация. Развитие самого разного рода достижений в современной науке ведёт к ускорению процесса определения нового рода изобретений и воздействия одного из явлений на другие. Доказательством тому может служить технология, никогда упоминаемая,

Скачать книгу