Скачать книгу

3.73 rac [8] Octanol : water partition coefficients (log K ow) −0.93 L [9]
Property Value Isomer Reference
Molar mass (g/mol) 144.13 D, L, meso, rac
Melting point (°C) 53–54 meso [10]
95–98 L [10]
95–98 D [10]
122–126 rac [10]
Specific rotation L‐lactide
[α]D 20 −266 (c 1.00 dichloromethane) [11]
[α]D 20 −299 (c 1.00 toluene) [11]
T (K) P sat (Pa) Source Accepted(A) or Rejected(R)
351.15 13.332 [13] R
352.65 39.997 [14] R
355.15 66.66 [15] A
358.15 133.32 [15] A
369.15 133.32 [16] R
377.15 599.95 [17] A
392.15 1599.9 [15] A
395.15 1866.5 [15] A
395.15 1999.8 [18] A
395.25 1599.9 [19] R
400.65 2666.4 [20] A
405.15 3333.1 [21] A
Schematic illustration of selected vapor pressures of anhydrous lactic acid selected from literature as summarized in Table 2.3.

      Witzke [1] evaluated lactide vapor pressure data from a Boehringer Ingelheim patent [12], as well as data provided by Cargill. The Boehringer Ingelheim patent provides vapor pressure data and a distillation to separate meso‐lactide from D‐ and rac‐lactide. The Witzke thesis provides plots superimposing the Cargill data with the patent data but does not tabulate the Cargill data. The Boehringer Ingelheim vapor pressures are provided in the approximate range of 100 to 225°C and are represented by:

      (2.2)m e s o minus upper L a c t i d e semicolon log Subscript 10 Baseline upper P Superscript s a t Baseline left-parenthesis upper P a right-parenthesis equals 10.4634 minus 2909.8 slash upper T left-parenthesis normal upper K right-parenthesis

      (2.3)StartLayout 1st Row Subscript upper D Baseline minus a n d r a c minus upper L a c t i d e semicolon 2nd Row log Subscript 10 Baseline upper P Superscript s a t Baseline left-parenthesis upper P a right-parenthesis equals 11.2451 minus 3300.6 slash upper T left-parenthesis normal upper K right-parenthesis EndLayout

      The equations and the patent data are provided in Figure 2.1. Witzke was able to reproduce the patent distillation to separate meso‐lactide from D‐ and rac‐lactide using intermediate temperatures and a high reflux ratio.

      Lactic acid exits as primarily a monomer unit in dilute aqueous solutions, nominally <20 wt%. Aqueous solutions are acidic and thus undergo equilibrium esterification. At high acid concentrations, the equilibrium shifts to the longer esters and the solution viscosity increases. The oligomerization of the lactic acid is an equilibrium‐limited reaction, dependent upon the acid and water concentrations. Two lactic acid molecules can esterify, yielding a dimer called lactoyllactic acid, L2:

      The

Скачать книгу