Скачать книгу

Biological Sciences 68: 165e175.

      128 Sami, F., Siddiqui, H., Alam, P. et al. (2021). Nitric oxide mitigates the salt-induced oxidative damage in mustard by upregulating the activity of various enzymes. Journal of Plant Growth Regulation. 213: 1–13. doi:10.1007/s00344-021-10331-4.

      129 Sanz, L., Albertos, P., Mateos, I. et al. (2015). Nitric oxide (NO) and phytohormones crosstalk during early plant development. Journal of Experimental Botany 66: 2857–2868.

      130 Seligman, K., Saviani, E.E., Oliveira, H.C. et al. (2008). Floral transition and nitric oxide emission during flower development in Arabidopsis thaliana is affected in nitrate reductase-deficient plants. Plant and Cell Physiology 49 (7): 1112–1121.

      131 Shao, R., Wang, K., and Shangguan, Z. (2010). Cytokinin-induced photosynthetic adaptability of Zea mays L. to drought stress associated with nitric oxide signal: probed by ESR spectroscopy and fast OJIP fluorescence rise. Journal of Plant Physiology 167: 472–479.

      132 Shen, Q., Wang, Y.T., Tian, H. et al. (2013). Nitric oxide mediates cytokinin functions in cell proliferation and meristem maintenance in Arabidopsis. Molecular Plant 6: 1214–1225.

      133 Shen, Z.J., Chen, J., Ghoto, K. et al. (2018). Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. Tree Physiology 38: 1605–1622.

      134 Shi, C., Qi, C., Ren, H. et al. (2015). Ethylene mediates brassinosteroid induced stomatal closure via Gα protein-activated hydrogen peroxide and nitric oxide production in Arabidopsis. The Plant Journal 82: 280–301.

      135 Shi, H., Ye, T., Zhu, J.K. et al. (2014). Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis. Journal of Experimental Botany 65: 4119–4131. doi:10.1093/jxb/eru184.

      136 Shi, S., Wang, G., Wang, Y. et al. (2005). Protective effect of nitric oxide against oxidative stress under ultraviolet-B irradiation. Nitric Oxide 13: 1–9.

      137 Smirnoff, N. (2000). Ascorbic acid: metabolism and functions of a multi-facetted molecule. Current Opinion in Plant Biology 3: 229–235.

      138 Song, F. and Goodman, R.M. (2001). Activity of nitric oxide is dependent on, but is partially required for function of salicylic acid in the signaling pathway in tobacco systemic acquired resistance. Molecular Plant–Microbe Interactions 12: 1458–1462.

      139 Tada, Y., Mori, T., Shinogi, T. et al. (2004). Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat. Molecular Plant–Microbe Interactions 17: 245–253.

      140 Tian, X. and Lei, Y. (2006). Nitric oxide treatment alleviates drought stress in wheat seedlings. Biologia Plantarum 50: 775–778. doi:10.1007/s10535-006-0129-7.

      141 Tischner, R., Planchet, E., and Kaiser, W.M. (2004). Mitochondrial electron transport as a source for nitric oxide in the unicellular green alga Chlorella sorokiniana. FEBS Letters 576: 151–155.

      142 Tossi, V., Lamattina, L., and Cassia, R. (2009). An increase in the concentration of abscisic acid is critical for nitric oxide-mediated plant adaptive responses to UV-B irradiation. New Phytologist 18: 871–879.

      143 Tun, N.N., Santa-Catarina, C., Begum, T. et al. (2006). Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant and Cell Physiology 47: 346–354.

      144 Uchida, A., Jagendorf, A.T., Hibino, T. et al. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science 163 (3): 515–523.

      145 Uhida, A., Jagendorf, T., Hibino, T. et al. (2002). Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Science 163: 515–523.

      146 Valderrama, R., Corpas, F.J., Carreras, A. et al. (2007). Nitrosative stress in plants. FEBS Letters 581: 453–461.

      147 Vital, R.G., Müller, C., Fabia, B. et al. (2019). Nitric oxide increases the physiological and biochemical stability of soybean plants under high temperature. Agronomy 9: 412. doi:10.3390/agronomy9080412.

      148 Vleehouwers, V.G.A.A., van Dooijeweert, W., Govers, F. et al. (2000). The hypersensitive response is associated with host and nonhost resistance to Phytophtora infestans. Planta 210: 853–864.

      149 Wang, X., Li, Q., Yang, M. et al. (2020). Crosstalk between hydrogen peroxide and nitric oxide mediates priming‐induced drought tolerance in wheat. Journal of Agronomy and Crop Science 207 (2): 224–235. doi:10.1111/jac.12458.

      150 Wang, X.S. and Han, J.G. (2007). Effects of NaCl and silicon on ion distribution in the roots, shoots and leaves of two alfalfa cultivars with different salt tolerance. Journal of Soil Science and Plant Nutrition 53 (3): 278–285. doi:10.1111/j.1747-0765.2007.00135.x.

      151 Wei, L., Zhang, J., Wang, C. et al. (2020). Recent progress in the knowledge on the alleviating effect of nitric oxide on heavy metal stress in plants. Plant Physiology and Biochemistry 147: 161–171. doi:10.1016/j.plaphy.2019.12.021.

      152 Wendehenne, D., Pugin, A., Klessig, D. et al. (2001). Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends in Plant Science 6: 177–183.

      153 Wu, A.P., Gong, L., Chen, X. et al. (2014). Interactions between nitric oxide, gibberellic acid, and phosphorus regulate primary root growth in Arabidopsis. Plant Biology 58: 335–340.

      154 Xu, J., Wang, W., Yin, H. et al. (2010). Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil 32: 321–330.

      155 Yamasaki, H., Shimoji, H., Ohshiro, Y. et al. (2001). Inhibitory effects of nitric oxide on oxidative phosphorylation in plant mitochondria. Nitric Oxide – Biology and Chemistry 5: 261–270.

      156 Yuan, H.M. and Huang, X. (2016). Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signalling in Arabidopsis. Plant Cell and Environment 39: 120–135.

      157 Yuanjie, D., Wei-Feng, C., Xiaoying, B. et al. (2019). Effects of exogenous nitric oxide and 24-epibrassinolide on physiological characteristics of peanut under cadmium stress. Pedosphere 29: 45–59. doi:10.1016/S1002-0160(17)60376.

      158 Zafra, A., Rodríguez-García, M.I., and Alché, J.D. (2010). Cellular localization of ROS and NO in olive reproductive tissues during flower development. BMC Plant Biology 10: 36–53.

      159 Zago, E., Morsa, S., Dat, J.F. et al. (2006). Nitric oxide and hydrogen peroxide responsive gene regulation during cell death induction in tobacco. Plant Physiology 141: 40411.

      160 Zeier, J., Delledonne, M., Mishina, T. et al. (2004). Genetic elucidation of nitric oxide signaling in incompatible plant–pathogen interactions. Plant Physiology 136: 2875–2886.

      161 Zhang, Y., Wang, L., Liu, Y. et al. (2006). Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224: 545–555.

      162 Zhao, J., Fujita, K., and Sakai, K. (2005). Oxidative stress in plant cell culture: a role in production of beta-thujaplicin by Cupressus lusitanica cultures. Biotechnology and Bioengineering 90: 621.

      163 Zhao, L., Chen, L., Gu, P. et al. (2019). Exogenous application of melatonin improves plant resistance to virus infection. Plant Pathology. 68: 1287–1296. doi:10.1111/ppa.13057.

      164 Zhao,

Скачать книгу