ТОП просматриваемых книг сайта:
Sustainable Solutions for Environmental Pollution, Volume 2. Группа авторов
Читать онлайн.Название Sustainable Solutions for Environmental Pollution, Volume 2
Год выпуска 0
isbn 9781119827641
Автор произведения Группа авторов
Жанр Биология
Издательство John Wiley & Sons Limited
Shahid, A., Malik, S., Zhu, H., Xu, J.R., Nawaz, M.Z., Nawaz, S., Alam, M.A., Mehmood, M.A., Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; a review. Sci. Total Environ., 704, 17, 2020a, doi: 10.1016/j.scitotenv.2019.135303.
Shahid, M.J., Al-surhanee, A.A., Kouadri, F., Ali, S., Nawaz, N., Afzal, M., Rizwan, M., Ali, B., Soliman, M.H., Role of microorganisms in the remediation of wastewater in floating treatment wetlands: A Review. Sustainability, 12, 14, 29, 2020b, doi: 10.3390/su12145559.
Shahid, M.J., Arslan, M., Ali, S., Siddique, M., Afzal, M., Floating wetlands: A sustainable tool for wastewater treatment. CLEAN – Soil, Air, Water, 46, 10, 1800120, 2018, doi: 10.1002/clen.201800120.
Sharifi, A., Kalin, L., Hantush, M.M., Isik, S., Jordan, T.E., Carbon dynamics and export from flooded wetlands: A modeling approach. Ecol. Modell., 263, 196–210, 2013, doi: 10.1016/j.ecolmodel.2013.04.023.
Sharma, S. and Amy, G., Bank filtration: A sustainable water treatment technology for developing countries. 34th WEDC International Conference, 2009.
Sievers, M., Parris, K.M., Swearer, S.E., Hale, R., Stormwater wetlands can function as ecological traps for urban frogs. Ecol. Appl., 28, 4, 1106–1115, 2018, doi: 10.1002/eap.1714.
Silva-Benavides, A.M., Torzillo, G., Nitrogen and phosphorus removal through laboratory batch cultures of microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix grown as monoalgal and as co-cultures. J. Appl. Phycol., 24, 2, 267–276, 2012, doi: 10.1007/s10811-011-9675-2.
Simperler, L., Ertl, T., Matzinger, A., Spatial compatibility of implementing nature-based solutions for reducing urban heat islands and stormwater pollution. Sustainability, 12, 15, 14, 2020, doi: 10.3390/su12155967.
Sinha, V., Pakshirajan, K., Chaturvedi, R., Chromium tolerance, bioaccumulation and localization in plants: An overview. J. Environ. Manage., 206, 715–730, 2018, doi: 10.1016/j.jenvman.2017.10.033.
Song, H.L., Zhang, S., Long, X.Z., Yang, X.L., Li, H., Xiang, W.L., Optimization of bioelectricity generation in constructed wetland-coupled microbial fuel cell systems. Water, 9, 3, 1–13, 2017, doi: 10.3390/w9030185
Strycharz, S.M., Woodard, T.L., Johnson, J.P., Nevin, K.P., Sanford, R.A., Loffler, F.E., Lovley, D.R., Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl. Environ. Microbiol., 74, 19, 5943–5947, 2008, doi: 10.1128/aem.00961-08.
Sun, Y., Deng, L., Pan, S.-Y., Chiang, P.-C., Sable, S.S., Shah, K.J., Integration of green and gray infrastructures for sponge city: Water and energy nexus. Water-Energy Nexus, 3, 29–40, 2020, doi: 10.1016/j.wen.2020.03.003.
Suresh Kumar, K., Dahms, H.-U., Won, E.-J., Lee, J.-S., Shin, K.-H., Microalgae – A promising tool for heavy metal remediation. Ecotox. Environ. Safe., 113, 329–352, 2015, doi: 10.1016/j.ecoenv.2014.12.019.
Tai, Y., Tam, N.F.-Y., Dai, Y., Yang, Y., Lin, J., Tao, R., Yang, Y., Wang, J., Wang, R., Huang, W., Xu, X., Assessment of rhizosphere processes for removing water-borne macrolide antibiotics in constructed wetlands. Plant Soil, 419, 1, 489–502, 2017, doi: 10.1007/s11104-017-3359-x.
Timmers, R.A., Rothballer, M., Strik, D., Engel, M., Schulz, S., Schloter, M., Hartmann, A., Hamelers, B., Buisman, C., Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell. Appl. Microbiol. Biotechnol., 94, 2, 537–548, 2012, doi: 10.1007/s00253-012-3894-6.
Tournebize, J., Chaumont, C., Mander, Ü., Implications for constructed wetlands to mitigate nitrate and pesticide pollution in agricultural drained watersheds. Ecol. Eng., 103, 415–425, 2017, doi: 10.1016/j.ecoleng.2016.02.014.
UN, Guide to the Millennium Assessment Reports, Vol. 1, United Nations, New York, New Jersey, 2005, http://www.millenniumassessment.org.
Uysal, Y., Removal of chromium ions from wastewater by duckweed, Lemna minor L. by using a pilot system with continuous flow. J. Hazard. Mater., 263, 486– 492, 2013, doi: 10.1016/j.jhazmat.2013.10.006.
Valdelfener, M., Barraud, S., Sibeud, E., Bacot, L., Perrin, Y., Jourdain, F., Marmonier, P. Do Sustainable Drainage Systems favour mosquito proliferation in cities compared to stormwater networks? Urban Water J., 16, 6, 436–443, 2019, doi: 10.1080/1573062X.2018.1523442.
Van de Moortel, A.M.K., Meers, E., De Pauw, N., Tack, F.M.G., Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands. Water, Air, Soil Pollution, 212, 1, 281–297, 2010, doi: 10.1007/s11270-010-0342-z.
Vanhoudt, N., Vandenhove, H., Leys, N., Janssen, P., Potential of higher plants, algae, and cyanobacteria for remediation of radioactively contaminated waters. Chemosphere, 207, 239–254, 2018, doi: 10.1016/j.chemosphere.2018.05.034.
Venkidusamy, K., Megharaj, M., Marzorati, M., Lockington, R., Naidu, R., Enhanced removal of petroleum hydrocarbons using a bioelectrochemical remediation system with pre-cultured anodes. Sci. Total Environ., 539, 61–69, 2016, doi: 10.1016/j.scitotenv.2015.08.098.
Verma, V.K., Tewari, S., Rai, J.P., Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresour. Technol., 99, 6, 1932–1938, 2008, doi: 10.1016/j.biortech.2007.03.042.
Vidon, P., Allan, C., Burns, D., Duval, T.P., Gurwick, N., Inamdar, S., Lowrance, R., Okay, J., Scott, D., Sebestyen, S., Hot spots and hot moments in riparian zones: potential forimproved water quality management. J. Am. Water Resour. Assoc., 46, 2, 278–298, 2010, doi: 10.1111/j.1752-1688.2010.00420.x.
Viggi, C.C., Presta, E., Bellagamba, M., Kaciulis, S., Balijepalli, S.K., Zanaroli, G., Papini, M.P., Rossetti, S., Aulenta, F., The “Oil-Spill Snorkel”: an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Front. Microbiol., 6, 881, 1–11, 2015, doi: 10.3389/ fmicb.2015.00881
Villa, J., Ju, Y., Stephen, T., Rey-Sanchez, A.C., Wrighton, K., Bohrer, G., Plant-mediated methane transport in emergent and floating-leaved species of a temperate freshwater mineral-soil wetland. Limnol. Oceanogr., 65, 7, 1635– 1650, 2020, doi: doi.org/10.1002/lno.11467.
Virdis, B., Rabaey, K., Rozendal, R.A., Yuan, Z.G., Keller, J., Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res., 44, 9, 2970–2980, 2010, doi: 10.1016/j.watres.2010.02.022.
Vymazal, J., Březinová, T., The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ. Int., 75, 11–20, 2015, doi: 10.1016/j.envint.2014.10.026.
Vymazal, J., Removal of nutrients in various types of constructed wetlands. Sci. Total Environ., 380, 1–3, 48–65, 2007, doi: 10.1672/08-216.1.
Vymazal, J., Constructed Wetlands for Wastewater Treatment: A Review. Proceedings of Taal 2007: 12th World Lake Conference, pp. 965–980, 2008. Vymazal, J., The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol. Eng., 35, 1, 1–17, 2009, doi: 10.1016/j. ecoleng.2008.08.016.
Vymazal, J., Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia, 674, 1, 133–156, 2011, doi: 10.1007/ s10750-011-0738-9.
Vymazal, J., Removal of nutrients in constructed wetlands for wastewater treatment through plant harvesting – Biomass and load matter the most. Ecol. Eng., 155, 105962, 2020, doi: 10.1016/j.ecoleng.2020.105962.
Walaszek,