ТОП просматриваемых книг сайта:
Bioprospecting of Microorganism-Based Industrial Molecules. Группа авторов
Читать онлайн.Название Bioprospecting of Microorganism-Based Industrial Molecules
Год выпуска 0
isbn 9781119717263
Автор произведения Группа авторов
Жанр Биология
Издательство John Wiley & Sons Limited
41 41 White, D.A., Hird, L.C., and Ali, S.T. (2013). Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. Journal of Applied Microbiology 115 (3): 744–755.
42 42 Shao, Z. (2011). Trehalolipids. In: Biosurfactants (ed. G. Soberón‐Chávez), 121–143. Berlin, Heidelberg: Springer.
43 43 Kuyukina, M.S., Ivshina, I.B., Philp, J.C. et al. (2001). Recovery of Rhodococcus biosurfactants using methyl tertiary‐butyl ether extraction. Journal of Microbiological Methods 46 (2): 149–156.
44 44 Tuleva, B., Christova, N., Cohen, R. et al. (2009). Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56. Process Biochemistry 44 (2): 135–141.
45 45 Kügler, J.H., Muhle‐Goll, C., Kühl, B. et al. (2014). Trehalose lipid biosurfactants produced by the actinomycetes Tsukamurella spumae and T. pseudospumae. Applied Microbiology and Biotechnology 98 (21): 8905–8915.
46 46 Wang, Y., Nie, M., Diwu, Z. et al. (2019). Characterization of trehalose lipids produced by a unique environmental isolate bacterium Rhodococcus qingshengii strain FF. Journal of Applied Microbiology 127 (5): 1442–1453.
47 47 Mnif, I. and Ghribi, D. (2016). Glycolipid biosurfactants: main properties and potential applications in agriculture and food industry. Journal of the Science of Food and Agriculture 96 (13): 4310–4320.
48 48 Dhasayan, A., Kiran, G.S., and Selvin, J. (2014). Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB‐30 for potential application in enhanced oil recovery. Applied Biochemistry and Biotechnology 174 (7): 2571–2584.
49 49 Singh, P. and Tiwary, B.N. (2016). Isolation and characterization of glycolipid biosurfactant produced by a Pseudomonas otitidis strain isolated from Chirimiri coal mines, India. Bioresources and Bioprocessing 3 (1): 42.
50 50 Deleu, M. and Paquot, M. (2004). From renewable vegetables resources to microorganisms: new trends in surfactants. Comptes Rendus Chimie 7 (6‐7): 641–646.
51 51 Joshi, S.J., Geetha, S.J., and Desai, A.J. (2015). Characterization and application of biosurfactant produced by Bacillus licheniformis R2. Applied Biochemistry and Biotechnology 177 (2): 346–361.
52 52 Bezza, F.A. and Chirwa, E.M.N. (2015). Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochemical Engineering Journal 101: 168–178.
53 53 Deepak, R. and Jayapradha, R. (2015). Lipopeptide biosurfactant from Bacillus thuringiensis pak2310: a potential antagonist against Fusarium oxysporum. Journal de Mycologie Medicale 25 (1): e15–e24.
54 54 Kamal, I., Blaghen, M., Lahlou, F.Z., and Hammoumi, A. (2015). Evaluation of biosurfactant production by Aeromonas salmonicida sp. degrading gasoline. International Journal of Applied Microbiology and Biotechnology Research 3: 89–95.
55 55 Sajna, K.V., Höfer, R., Sukumaran, R.K. et al. (2015). White Biotechnology in Biosurfactants. In: Industrial Biorefineries and White Biotechnology (eds. A. Pandey, R. Höfer, M. Taherzadeh, et al.), 499–521. Amsterdam, Oxford, Waltham: Elsevier.
56 56 Yi, G., Liu, Q., Lin, J. et al. (2017). Repeated batch fermentation for surfactin production with immobilized Bacillus subtilis BS‐37: Two‐stage pH control and foam fractionation. Journal of Chemical Technology & Biotechnology 92 (3): 530–535.
57 57 Tang, Q., Bie, X., Lu, Z. et al. (2014). Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. Journal of Microbiology 52 (8): 675–680.
58 58 Balan, S.S., Kumar, C.G., and Jayalakshmi, S. (2016). Pontifactin, a new lipopeptide biosurfactant produced by a marine Pontibacter korlensis strain SBK‐47: purification, characterization and its biological evaluation. Process Biochemistry 51 (12): 2198–2207.
59 59 Clements, T., Ndlovu, T., Khan, S., and Khan, W. (2019). Biosurfactants produced by Serratia species: Classification, biosynthesis, production and application. Applied Microbiology and Biotechnology 103 (2): 589–602.
60 60 Rodrigues, L., Moldes, A., Teixeira, J., and Oliveira, R. (2006). Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochemical Engineering Journal 28 (2): 109–116.
61 61 Satpute, S.K., Mone, N.S., Das, P. et al. (2019). Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiology 19 (1): 1–15.
62 62 Vecino, X., Barbosa‐Pereira, L., Devesa‐Rey, R. et al. (2015). Optimization of extraction conditions and fatty acid characterization of Lactobacillus pentosus cell‐bound biosurfactant/bioemulsifier. Journal of the Science of Food and Agriculture 95 (2): 313–320.
63 63 Morita, T., Konishi, M., Fukuoka, T. et al. (2007). Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317T. Journal of Bioscience and Bioengineering 104 (1): 78–81.
64 64 Morita, T., Fukuoka, T., Imura, T., and Kitamoto, D. (2009). Production of glycolipid biosurfactants by basidiomycetous yeasts. Biotechnology and Applied Biochemistry 53 (1): 39–49.
65 65 Morita, T., Fukuoka, T., Kosaka, A. et al. (2015). Selective formation of mannosyl‐l‐arabitol lipid by Pseudozyma tsukubaensis JCM16987. Applied Microbiology and Biotechnology 99 (14): 5833–5841.
66 66 Saika, A., Koike, H., Fukuoka, T., and Morita, T. (2018). Tailor‐made mannosylerythritol lipids: current state and perspectives. Applied Microbiology and Biotechnology 102 (16): 6877–6884.
67 67 Fukuoka, T., Kawamura, M., Morita, T. et al. (2008). A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants. Carbohydrate Research 343 (17): 2947–2955.
68 68 Balan, S.S., Kumar, C.G., and Jayalakshmi, S. (2019). Physicochemical, structural and biological evaluation of Cybersan (trigalactomargarate), a new glycolipid biosurfactant produced by a marine yeast, Cyberlindnera saturnus strain SBPN‐27. Process Biochemistry 80: 171–180.
69 69 Konishi, M., Fujita, M., Ishibane, Y. et al. (2016). Isolation of yeast candidates for efficient sophorolipids production: their production potentials associate to their lineage. Bioscience, Biotechnology, and Biochemistry 80 (10): 2058–2064.
70 70 Konishi, M., Fukuoka, T., Morita, T. et al. (2008). Production of new types of sophorolipids by Candida batistae. Journal of Oleo Science 57 (6): 359–369.
71 71 Kurtzman, C.P., Price, N.P., Ray, K.J., and Kuo, T.M. (2010). Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiology Letters 311 (2): 140–146.
72 72 Kurtzman, C.P. (2012). Candida kuoi sp. nov., an anamorphic species of the Starmerella yeast clade that synthesizes sophorolipids. International Journal of Systematic and Evolutionary Microbiology 62 (9): 2307–2311.
73 73 Sharma, P., Sangwan, S., and Kaur, H. (2019). Process parameters for biosurfactant production using yeast Meyerozyma guilliermondii YK32. Environmental Monitoring and Assessment 191 (9): 531.
74 74 Samad, A., Zhang, J., Chen, D., and Liang, Y. (2015). Sophorolipid production from biomass hydrolysates. Applied Biochemistry and Biotechnology 175 (4): 2246–2257.
75 75 Shah, M.U.H., Sivapragasam, M., Moniruzzaman, M. et al. (2017). Production of sophorolipids by Starmerella bombicola yeast using new hydrophobic substrates. Biochemical Engineering Journal 127: 60–67.
76 76 Wang, H., Roelants, S.L., To, M.H. et al. (2019). Starmerella bombicola: recent advances on sophorolipid production and prospects of waste stream utilization. Journal of Chemical Technology & Biotechnology 94 (4): 999–1007.
77 77 Chen, J., Song, X., Zhang, H., and Qu, Y. (2006). Production, structure elucidation and anticancer properties of