ТОП просматриваемых книг сайта:
Biomolecular Engineering Solutions for Renewable Specialty Chemicals. Группа авторов
Читать онлайн.Название Biomolecular Engineering Solutions for Renewable Specialty Chemicals
Год выпуска 0
isbn 9781119771944
Автор произведения Группа авторов
Жанр Биология
Издательство John Wiley & Sons Limited
68 Overhage, J., Steinbüchel, A., & Priefert, H. (2002). Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstoniaeutropha H16. Applied and Environmental Microbiology, 68(9), 4315–4321.
69 Overhage, J., Steinbüchel, A., & Priefert, H. (2003). Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli. Applied and Environmental Microbiology, 69(11), 6569–6576.
70 Overhage, J., Steinbüchel, A., & Priefert, H. (2006). Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167. Journal of Biotechnology, 125(3), 369–376.
71 Pandey, A., Soccol, C. R., Nigam, P., Brand, D., Mohan, R., & Roussos, S. (2000). Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochemical Engineering Journal, 6(2), 153–162.
72 Paz, A., Carballo, J., Pérez, M. J., & Domínguez, J. M. (2016). Bacillus aryabhattai BA03: a novel approach to the production of natural value‐added compounds. World Journal of Microbiology and Biotechnology, 32(10), 159.
73 Perera, C. O., & Owen, E. (2010). Effect of tissue disruption by different methods followed by incubation with hydrolyzing enzymes on the production of vanillin from Tongan vanilla beans. Food and Bioprocess Technology, 3(1), 49.
74 Plaggenborg, R., Steinbüchel, A., & Priefert, H. (2001). The coenzyme A‐dependent, non‐β‐oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans. FEMS Microbiology Letters, 205(1), 9–16.
75 Plaggenborg, R., Overhage, J., Steinbüchel, A., & Priefert, H. (2003). Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440. Applied Microbiology and Biotechnology, 61(5–6), 528–535.
76 Plaggenborg, R., Overhage, J., Loos, A., Archer, J. A., Lessard, P., Sinskey, A. J., & Priefert, H. (2006). Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Applied Microbiology and Biotechnology, 72(4), 745.
77 Priefert, H., Rabenhorst, J., & Steinbüchel, A. (2001). Biotechnological production of vanillin. Applied Microbiology and Biotechnology, 56(3–4), 296–314.
78 Rabenhorst, J. (1996). Production of methoxyphenol‐type natural aroma chemicals by biotransformation of eugenol with a new Pseudomonas sp. Applied Microbiology and Biotechnology, 46(5), 470–474.
79 Rabenhorst, J., & Hopp, R. (2000). Process for the preparation of vanillin and suitable microorganisms. US Patent 6133003.
80 Rana, R., Mathur, A., Jain, C. K., Sharma, S. K., & Mathur, G. (2013). Microbial production of vanillin. International Journal of Biotechnology and Bioengineering Research, 4(3), 227–234.
81 Ranadive, A. S. (1994). Vanilla‐cultivation, curing, chemistry, technology and commercial products. Developments in food science. In: Charalambous, G. (ed). Spices, Herbs and Edible Fungi. pp 517–577. Elsevier, Amsterdam.
82 Rao, S. R., & Ravishankar, G. A. (2000). Biotransformation of protocatechuic aldehyde and caffeic acid to vanillin and capsaicin in freely suspended and immobilized cell cultures of Capsicum frutescens. Journal of Biotechnology, 76 (2–3), 137–146.
83 Ruiz‐Terán, F., Perez‐Amador, I., & López‐Munguia, A. (2001). Enzymatic extraction and transformation of glucovanillin to vanillin from vanilla green pods. Journal of Agricultural and Food Chemistry, 49 (11), 5207–5209.
84 Ryu, J. Y., Seo, J. Y., Lee, Y. S., Lim, Y. H., Ahn, J. H., & Hur, H. G., (2005). Identification of syn‐ and anti‐anethole‐2,3‐epoxides in the metabolism of trans‐anethole by the newly isolated bacterium Pseudomonas putida JYR‐1. Journal of Agriculture and Food Chemistry, 53, 5954–5958.
85 Shimoni, E., Ravid, U., & Shoham, Y. (2000). Isolation of a Bacillus sp. capable of transforming isoeugenol to vanillin. Journal of Biotechnology, 78(1), 1–9.
86 Shimoni, E., Baasov, T., Ravid, U., & Shoham, Y. (2003). Biotransformations of propenylbenzenes by an Arthrobacter sp. and its t‐anethole blocked mutants. Journal of Biotechnology, 105(1–2), 61–70.
87 da Silva, E. B., Zabkova, M., Araújo, J. D., Cateto, C. A., Barreiro, M. F., Belgacem, M. N., & Rodrigues, A. E. (2009). An integrated process to produce vanillin and lignin‐based polyurethanes from Kraft lignin. Chemical Engineering Research and Design, 87(9), 1276–1292.
88 Sinha, A. K., Sharma, U. K., & Sharma, N. (2008). A comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents. International Journal of Food Sciences and Nutrition, 59(4), 299–326.
89 Song, J. W., Lee E, G., Yoon, S. H., Lee, S. H., Lee, J. M., Lee, S. G., & Kim, S. W. (2009). Vanillin production enhanced by substrate channeling in recombinant E. coli. Poster no 125 (session 1), SIM annual meeting and exhibition. Indus. Microbiol. Biotechnol. Westin harbor castle, Toronto ON, Canada.
90 Srivastava, S., Luqman, S., Khan, F., Chanotiya, C. S., & Darokar, M. P. (2010). Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger. Bioinformation, 4(7), 320.
91 Stentelaire, C., Lesage‐Meessen, L., Delattre, M., Haon, M., Sigoillot, J. C., Ceccaldi, B. C., & Asther, M. (1998). By‐passing of unwanted vanillyl alcohol formation using selective adsorbents to improve vanillin production with Phanerochaete chrysosporium. World Journal of Microbiology and Biotechnology, 14(2), 285.
92 Stentelaire, C., Lesage‐Meessen, L., Oddou, J., Bernard, O., Bastin, G., Ceccaldi, B. C., & Asther, M. (2000). Design of a fungal bioprocess for vanillin production from vanillic acid at scalable level by Pycnoporus cinnabarinus. Journal of Bioscience and Bioengineering, 89(3), 223–230.
93 Tadasa, K. (1977). Degradation of eugenol by a microorganism. Agricultural and Biological Chemistry, 41(6), 925–929.
94 Tadasas, K., & Kayahara, H. (1983) Initial steps of eugenol degradation pathway of a microorganism. Agricultural and Biological Chemistry, 47, 2639–2640.
95 Tai, A., Sawano, T., Yazama, F., & Ito, H. (2011). Evaluation of antioxidant activity of vanillin by using multiple antioxidant assays. Biochimica et Biophysica Acta (BBA)‐General Subjects, 1810(2), 170–177.
96 Tan, M. C., Liew, S. L., Maskat, M. Y., Aida, W. W., & Osman, H. (2015). Optimization of vanillin production using isoeugenol as substrate by Aspergillus niger I‐1472. International Food Research Journal, 22(4), 1651.
97 Tang, P. L., & Hassan, O. (2020). Bioconversion of ferulic acid attained from pineapple peels and pineapple crown leaves into vanillic acid and vanillin by Aspergillus niger I‐1472. BMC Chemistry, 14(1), 7.
98 Tang, J., Shi, L., Li, L., Long, L., & Ding, S. (2018). Expression and characterization of a 9‐cis‐epoxycarotenoid dioxygenase from Serratia sp. ATCC 39006 capable of biotransforming isoeugenol and 4‐vinylguaiacol to vanillin. Biotechnology Reports, 18, e00253.
99 Tilay, A., Bule, M., & Annapure, U. (2010). Production of biovanillin by one‐step biotransformation using fungus Pycnoporous cinnabarinus. Journal of Agricultural and Food Chemistry, 58(7), 4401–4405.
100 Topakas, E., Kalogeris, E., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. LWT‐Food Science and Technology, 36(6), 561–565.
101 Torre, P., De Faveri, D., Perego, P., Ruzzi, M., Barghini, P., Gandolfi, R., & Converti, A. (2004). Bioconversion of ferulate into vanillin by Escherichia coli strain JM109/pBB1 in an immobilized‐cell reactor. Ann. Microbiol, 54, 517–527.
102 Unno, T., Kim, S. J., Kanaly, R. A., Ahn, J. H., Kang, S. I., & Hur, H. G. (2007). Metabolic characterization of newly isolated Pseudomonas nitroreducens Jin1 growing on eugenol and isoeugenol. Journal of Agricultural and Food Chemistry, 55(21), 8556–8561.
103 Walton,