Скачать книгу

Xu, P.X., Zheng, W., Laclef, C. et al. (2002). Eya1 is required for the morphogenesis of mammalian thymus, parathyroid and thyroid. Development 129 (13): 3033–3044.

      15 15 Nehls, M., Kyewski, B., Messerle, M. et al. (1996). Two genetically separable steps in the differentiation of thymic epithelium. Science 272 (5263): 886–889.

      16 16 Manley, N.R. and Capecchi, M.R. (1998). Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev. Biol. 195 (1): 1–15.

      17 17 Dietrich, S. and Gruss, P. (1995). undulated phenotypes suggest a role of Pax‐1 for the development of vertebral and extravertebral structures. Dev. Biol. 167 (2): 529–548.

      18 18 Conway, S.J., Henderson, D.J., and Copp, A.J. (1997). Pax3 is required for cardiac neural crest migration in the mouse: evidence from the splotch (Sp2H) mutant. Development 124 (2): 505–514.

      19 19 Peters, H., Neubuser, A., Kratochwil, K., and Balling, R. (1998). Pax9‐deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 12 (17): 2735–2747.

      20 20 Laclef, C., Souil, E., Demignon, J., and Maire, P. (2003). Thymus, kidney and craniofacial abnormalities in Six 1 deficient mice. Mech. Dev. 120 (6): 669–679.

      21 21 Jerome, L.A. and Papaioannou, V.E. (2001). DiGeorge syndrome phenotype in mice mutant for the T‐box gene, Tbx1. Nat. Genet. 27 (3): 286–291.

      22 22 Custer, R.P., Bosma, G.C., and Bosma, M.J. (1985). Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. Am. J. Pathol. 120 (3): 464–477.

      23 23 Mombaerts, P., Iacomini, J., Johnson, R.S. et al. (1992). RAG‐1‐deficient mice have no mature B and T lymphocytes. Cell 68 (5): 869–877.

      24 24 Shinkai, Y., Rathbun, G., Lam, K.P. et al. (1992). RAG‐2‐deficient mice lack mature lymphocytes owing to inability to initiate V(D). J. Rearrangement. Cell 68 (5): 855–867.

      25 25 DiSanto, J.P., Muller, W., Guy‐Grand, D. et al. (1995). Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor gamma chain. Proc. Natl. Acad. Sci. U.S.A. 92 (2): 377–381.

      26 26 Cao, X., Shores, E.W., Hu‐Li, J. et al. (1995). Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain. Immunity 2 (3): 223–238.

      27 27 Pearse, G. (2006). Histopathology of the thymus. Toxicol. Pathol. 34 (5): 515–547.

      28 28 Burnet, F.M. and Holmes, M.C. (1964). Thymic changes in the mouse strain Nzb in relation to the auto‐immune state. J. Pathol. Bacteriol. 88: 229–241.

      29 29 Van den Broeck, W., Derore, A., and Simoens, P. (2006). Anatomy and nomenclature of murine lymph nodes: descriptive study and nomenclatory standardization in BALB/cAnNCrl mice. J. Immunol. Methods 312 (1–2): 12–19.

      30 30 van de Pavert, S.A. and Mebius, R.E. (2010). New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10 (9): 664–674.

      31 31 Onder, L. and Ludewig, B. (2018). A fresh view on lymph node organogenesis. Trends Immunol. 39 (10): 775–787.

      32 32 Colbeck, E.J., Ager, A., Gallimore, A., and Jones, G.W. (2017). Tertiary lymphoid structures in cancer: drivers of antitumor immunity, immunosuppression, or bystander sentinels in disease? Front. Immunol. 8: 1830.

      33 33 Buckley, C.D., Barone, F., Nayar, S. et al. (2015). Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu. Rev. Immunol. 33: 715–745.

      34 34 Bellomo, A., Gentek, R., Bajenoff, M., and Baratin, M. (2018). Lymph node macrophages: scavengers, immune sentinels and trophic effectors. Cell. Immunol. 330: 168–174.

      35 35 Pasparakis, M., Alexopoulou, L., Episkopou, V., and Kollias, G. (1996). Immune and inflammatory responses in TNF alpha‐deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184 (4): 1397–1411.

      36 36 De Togni, P., Goellner, J., Ruddle, N.H. et al. (1994). Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264 (5159): 703–707.

      37 37 Banks, T.A., Rouse, B.T., Kerley, M.K. et al. (1995). Lymphotoxin‐alpha‐deficient mice. Effects on secondary lymphoid organ development and humoral immune responsiveness. J. Immunol. 155 (4): 1685–1693.

      38 38 Koni, P.A., Sacca, R., Lawton, P. et al. (1997). Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta‐deficient mice. Immunity 6 (4): 491–500.

      39 39 Alimzhanov, M.B., Kuprash, D.V., Kosco‐Vilbois, M.H. et al. (1997). Abnormal development of secondary lymphoid tissues in lymphotoxin beta‐deficient mice. Proc. Natl. Acad. Sci. U.S.A. 94 (17): 9302–9307.

      40 40 Futterer, A., Mink, K., Luz, A. et al. (1998). The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9 (1): 59–70.

      41 41 Kong, Y.Y., Yoshida, H., Sarosi, I. et al. (1999). OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph‐node organogenesis. Nature 397 (6717): 315–323.

      42 42 Dougall, W.C., Glaccum, M., Charrier, K. et al. (1999). RANK is essential for osteoclast and lymph node development. Genes Dev. 13 (18): 2412–2424.

      43 43 Weih, F. and Caamano, J. (2003). Regulation of secondary lymphoid organ development by the nuclear factor‐kappaB signal transduction pathway. Immunol. Rev. 195: 91–105.

      44 44 Miyawaki, S., Nakamura, Y., Suzuka, H. et al. (1994). A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur. J. Immunol. 24 (2): 429–434.

      45 45 Fukuyama, S., Hiroi, T., Yokota, Y. et al. (2002). Initiation of NALT organogenesis is independent of the IL‐7R, LTbetaR, and NIK signaling pathways but requires the Id2 gene and CD3(−)CD4(+)CD45(+) cells. Immunity 17 (1): 31–40.

      46 46 Yokota, Y., Mansouri, A., Mori, S. et al. (1999). Development of peripheral lymphoid organs and natural killer cells depends on the helix‐loop‐helix inhibitor Id2. Nature 397 (6721): 702–706.

      47 47 Sun, Z., Unutmaz, D., Zou, Y.R. et al. (2000). Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288 (5475): 2369–2373.

      48 48 Tachibana, M., Tenno, M., Tezuka, C. et al. (2011). Runx1/Cbfbeta2 complexes are required for lymphoid tissue inducer cell differentiation at two developmental stages. J. Immunol. 186 (3): 1450–1457.

      49 49 Nagatake, T., Fukuyama, S., Sato, S. et al. (2015). Central role of core binding factor beta2 in mucosa‐associated lymphoid tissue organogenesis in mouse. PLoS One 10 (5): e0127460.

      50 50 Ansel, K.M., Ngo, V.N., Hyman, P.L. et al. (2000). A chemokine‐driven positive feedback loop organizes lymphoid follicles. Nature 406 (6793): 309–314.

      51 51 Turner, V.M. and Mabbott, N.A. (2017). Structural and functional changes to lymph nodes in ageing mice. Immunology 151 (2): 239–247.

      52 52 Terahara, K., Yoshida, M., Igarashi, O. et al. (2008). Comprehensive gene expression profiling of Peyer's patch M cells, villous M‐like cells, and intestinal epithelial cells. J. Immunol. 180 (12): 7840–7846.

      53 53 Adachi, S., Yoshida, H., Kataoka, H., and Nishikawa, S. (1997). Three distinctive steps in Peyer's patch formation of murine embryo. Int. Immunol. 9 (4): 507–514.

      54 54 Seymour, R., Shirley, B.J., HogenEsch, H. et al. (2013). Loss of function of the mouse sharpin gene results in Peyer's patch regression. PLoS One 8 (2): e55224.

      55 55 Aw, D., Hilliard, L., Nishikawa, Y. et al. (2016). Disorganization of the splenic microanatomy in ageing mice. Immunology 148 (1): 92–101.

      56 56 Turner, V.M. and Mabbott, N.A. (2017). Influence of ageing on the microarchitecture of the spleen and lymph nodes. Biogerontology 18 (5): 723–738.

      57 57

Скачать книгу