Скачать книгу

Pampel, H., Vierkant, P., Scholze, F. et al. (2013). Making research data repositories visible: the re3data.org registry. PLoS One 8 (11): e78080.

      4 4 Bult, C.J., Blake, J.A., Smith, C.L. et al., Mouse Genome Database Group (2019). Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 47 (D1): D801–D806.

      5 5 Smith, C.M., Hayamizu, T.F., Finger, J.H. et al. (2019). The mouse Gene Expression Database (GXD): 2019 update. Nucleic Acids Res. 47 (D1): D774–D779.

      6 6 Heffner, C.S., Herbert Pratt, C., Babiuk, R.P. et al. (2012). Supporting conditional mouse mutagenesis with a comprehensive cre characterization resource. Nat. Commun. 3: 1218.

      7 7 Lovering, R.C., Roncaglia, P., Howe, D.G. et al. (2018). Improving interpretation of cardiac phenotypes and enhancing discovery with expanded knowledge in the Gene Ontology. Circ Genom Precis Med. 11 (2): e001813.

      8 8 Hill, D.P., D'Eustachio, P., Berardini, T.Z. et al. (2016). Modeling biochemical pathways in the gene ontology. Database 2016: baw126.

      9 9 Gene Ontology, C., Blake, J.A., Dolan, M. et al. (2013). Gene Ontology annotations and resources. Nucleic Acids Res. 41 (Database issue): D530–D535.

      10 10 Thomas, P.D., Wood, V., Mungall, C.J. et al., Gene Ontology Consortium (2012). On the use of gene ontology annotations to assess functional similarity among orthologs and paralogs: a short report. PLoS Comput. Biol. 8 (2): e1002386.

      11 11 Blake, J.A. and Harris, M.A. (2008). The Gene Ontology (GO) project: structured vocabularies for molecular biology and their application to genome and expression analysis. Curr. Protoc. Bioinformatics;Chapter 7:Unit 7.2.

      12 12 Krupke, D.M., Begley, D.A., Sundberg, J.P. et al. (2017). The Mouse Tumor Biology Database: a comprehensive resource for mouse models of human cancer. Cancer Res. 77 (21): e67–e70.

      13 13 Begley, D.A., Sundberg, J.P., Krupke, D.M. et al. (2015). Finding mouse models of human lymphomas and leukemia's using the Jackson laboratory mouse tumor biology database. Exp. Mol. Pathol. 99 (3): 533–536.

      14 14 Bult, C.J., Krupke, D.M., Begley, D.A. et al. (2015). Mouse Tumor Biology (MTB): a database of mouse models for human cancer. Nucleic Acids Res. 43 (Database issue): D818–D824.

      15 15 Begley, D.A., Krupke, D.M., Neuhauser, S.B. et al. (2014). Identifying mouse models for skin cancer using the Mouse Tumor Biology Database. Exp. Dermatol. 23 (10): 761–763.

      16 16 Conte, N., Mason, J.C., Halmagyi, C. et al. (2019). PDX Finder: a portal for patient‐derived tumor xenograft model discovery. Nucleic Acids Res. 47 (D1): D1073–D1079.

      17 17 Motenko, H., Neuhauser, S.B., O'Keefe, M., and Richardson, J.E. (2015). MouseMine: a new data warehouse for MGI. Mamm. Genome 26 (7–8): 325–330.

      18 18 Smith, C.L. and Eppig, J.T. (2015). Expanding the mammalian phenotype ontology to support automated exchange of high throughput mouse phenotyping data generated by large‐scale mouse knockout screens. J. Biomed. Semantics 6: 11.

      19 19 Bello, S.M., Shimoyama, M., Mitraka, E. et al. (2018). Disease Ontology: improving and unifying disease annotations across species. Dis. Model. Mech. 11 (3): dmm032839.

      20 20 Kohler, S., Doelken, S.C., Mungall, C.J. et al. (2014). The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 42 (Database issue): D966–D974.

      21 21 Amberger, J.S., Bocchini, C.A., Scott, A.F., and Hamosh, A. (2019). OMIM.org: leveraging knowledge across phenotype‐gene relationships. Nucleic Acids Res. 47 (D1): D1038–D1043.

      22 22 Mungall, C.J., McMurry, J.A., Kohler, S. et al. (2017). The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species. Nucleic Acids Res. 45 (D1): D712–D722.

      23 23 Alliance of Genome Resources Consortium (2019). The Alliance of Genome Resources: building a modern data ecosystem for model organism databases. Genetics 213 (4): 1189–1196.

      24 24 Begley, D.A., Krupke, D.M., Neuhauser, S.B. et al. (2012). The Mouse Tumor Biology Database (MTB): a central electronic resource for locating and integrating mouse tumor pathology data. Vet. Pathol. 49 (1): 218–223.

      25 25 Begley, D.A., Krupke, D.M., Vincent, M.J. et al. (2007). Mouse Tumor Biology Database (MTB): status update and future directions. Nucleic Acids Res. 35 (Database issue): D638–D642.

      26 26 Bult, C.J., Krupke, D.M., Sundberg, J.P., and Eppig, J.T. (2000). Mouse tumor biology database (MTB): enhancements and current status. Nucleic Acids Res. 28 (1): 112–114.

      27 27 Krupke, D.M., Begley, D.A., Sundberg, J.P. et al. (2008). The Mouse Tumor Biology database. Nat. Rev. Cancer 8 (6): 459–465.

      28 28 Krupke, D.M., Naf, D., Vincent, M.J. et al. (2005). The Mouse Tumor Biology Database: integrated access to mouse cancer biology data. Exp. Lung Res. 31 (2): 259–270.

      29 29 Naf, D., Krupke, D.M., Sundberg, J.P. et al. (2002). The Mouse Tumor Biology Database: a public resource for cancer genetics and pathology of the mouse. Cancer Res. 62 (5): 1235–1240.

      30 30 Mikaelian, I., Nanney, L.B., Parman, K.S. et al. (2004). Antibodies that label paraffin‐embedded mouse tissues: a collaborative endeavor. Toxicol. Pathol. 32 (2): 181–191.

      31 31 Morse, H.C. 3rd, Anver, M.R., Fredrickson, T.N. et al. (2002). Bethesda proposals for classification of lymphoid neoplasms in mice. Blood 100 (1): 246–258.

      32 32 Kogan, S.C., Ward, J.M., Anver, M.R. et al. (2002). Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice. Blood 100 (1): 238–245.

      33 33 Sundberg, J.P., Berndt, A., Sundberg, B.A. et al. (2011). The mouse as a model for understanding chronic diseases of aging: the histopathologic basis of aging in inbred mice. Pathobiol. Aging Age Relat. Dis. 1: 7179.

      34 34 Berndt, A., Cario, C.L., Silva, K.A. et al. (2011). Identification of Fat4 and Tsc22d1 as novel candidate genes for spontaneous pulmonary adenomas. Cancer Res. 71 (17): 5779–5791.

      35 35 NCBI Resource Coordinators (2016). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44 (D1): D7–D19.

      36 36 NCBI Resource Coordinators (2015). Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 43 (Database issue): D6–D17.

      37 37 Blake, J.A., Eppig, J.T., Kadin, J.A. et al. (2017). Mouse Genome Database (MGD)‐2017: community knowledge resource for the laboratory mouse. Nucleic Acids Res. 45 (D1): D723–D729.

      38 38 Keane, T.M., Goodstadt, L., Danecek, P. et al. (2011). Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477 (7364): 289–294.

      39 39 Yalcin, B., Wong, K., Agam, A. et al. (2011). Sequence‐based characterization of structural variation in the mouse genome. Nature 477 (7364): 326–329.

      40 40 Klement, J.F., Matsuzaki, Y., Jiang, Q.J. et al. (2005). Targeted ablation of the Abcc6 gene results in ectopic mineralization of connective tissues. Mol. Cell. Biol. 25 (18): 8299–8310.

      41 41 Berndt, A., Li, Q., Potter, C.S. et al. (2013). A single‐nucleotide polymorphism in the Abcc6 gene associates with connective tissue mineralization in mice similar to targeted models for pseudoxanthoma elasticum. J. Invest. Dermatol. 133 (3): 833–836.

      42 42 Li, Q., Guo, H., Chou, D.W. et al. (2014). Mouse models for pseudoxanthoma elasticum: genetic and dietary modulation of the ectopic mineralization phenotypes. PLoS One 9 (2): e89268.

      43 43 Li, Q., Philip, V.M., Stearns, T.M. et al. (2019). Quantitative trait locus and integrative genomics revealed candidate modifier genes for ectopic mineralization in mouse models of pseudoxanthoma elasticum. J. Invest. Dermatol. 139 (12): 2447–2457.e7.

      44 44 Dolney, D.E., Szalai, G., and Felder, M.R. (2001). Differences in charge and kinetic properties of alcohol dehydrogenase 4 from C57BL/6 mice compared to other inbred strains are associated with a cysteine120 to arginine120 substitution. Biochem. Genet. 39 (7–8): 239–250.

      45 45 Sundberg, J.P., Taylor, D., Lorch, G. et al. (2011).

Скачать книгу