ТОП просматриваемых книг сайта:
Diatom Morphogenesis. Группа авторов
Читать онлайн.Название Diatom Morphogenesis
Год выпуска 0
isbn 9781119488194
Автор произведения Группа авторов
Жанр Биология
Издательство John Wiley & Sons Limited
If successive states of instability via symmetry states are found during diatom valve formation or morphogenesis more broadly, how does this impact diatom morphological complexity [2.107] over time? Additionally, what happens to morphological complexity over long time periods at stationarity? The expectation is that dynamical complexity is related to chaotic instability [2.22] and that increasing complexity occurs over time. Algorithmic information theory may be used to tie symmetry to complexity and to determine the role of instability over time, and in turn, gain an understanding of another facet of diatom morphogenesis.
References
[2.1] Albrecht-Buehler, G., Daughter 3T3 cells. Are they mirror images of each other? J. Cell Biol. ,72, 3, 595–603, 1977.
[2.2] Alicea, B. and Gordon, R., Toy models for macroevolutionary patterns and trends. BioSystems, 122, Special Issue: Patterns of Evolution, 25–37, 2014.
[2.3] Alicea, B. and Gordon, R., Cell differentiation processes as spatial networks: Identifying four-dimensional structure in embryogenesis. BioSystems, 173, 235–246, 2018.
[2.4] Alvare, G. and Gordon, R., CT Brush and CancerZap!: Two video games for computed tomography dose minimization. Theor. Biol. Med. Modell., 12, 1, 7, 2015.
[2.5] Amr, I.I., Amin, M., El-Kafrawy, P., Sauber, A.M., Using Statistical Moment Invariants and Entropy in Image Retrieval. Int. J. Comput. Sci. Inf. Secur., 7, 1, 160–164, 2010.
[2.6] Aragon, J., Barrio, R., Woolley, T., Baker, R., Maini, P., Nonlinear effects on Turing patterns: Time oscillations and chaos. Phys. Rev. E, 86, 2, 026201, 2012.
[2.7] Astauroff, B.L., Analyse der erblichen Storungsfalle der bilateralen Symmetrie [Analysis of hereditary disorders of bilateral symmetry] [German]. Z. Indukt. Abstamm. Vererbungsl., 55, I, 183–262, 1930.
[2.8] Atay, F.M., Jalan, S., Jost, J., Randomness, Chaos, and Structure. Complexity, 15, 1, 29–35, 2009.
[2.9] Attneave, F., Some informational aspects of visual perception. Psychol. Rev., 61, 3, 183–193, 1954.
[2.10] Benci, V. and Menconi, G., Some remarks on the definition of Boltzmann, Shannon and Kolmogorov entropy. Milan J. Math., 73, 1, 187–209, 2005.
[2.11] Bentley, K., Clack, C., Cox, E.J., Diatom colony formation: A computational study predicts a single mechanism can produce both linkage and separation valves due to an environmental switch. J. Phycol., 48, 3, 716–728, 2012.
[2.12] Bentley, K., Cox, E.J., Bentley, P.J., Nature’s batik: A computer evolution model of diatom valve morphogenesis. J. Nanosci. Nanotechnol., 5, 1, 25–34, 2005.
[2.13] Biederman, I., Recognition-by-components: A theory of human image understanding. Psychol. Rev., 94, 2, 115–147, 1987.
[2.14] Biederman, I., Mezzanotte, R.J., Rabinowitz, J.C., Scene perception: Detecting and judging objects undergoing relational violations. Cogn. Psychol., 14, 2, 143–177, 1982.
[2.15] Bissantz, N., Holzmann, H., Pawlak, M., Testing for image symmetries-with application to confocal microscopy. IEEE Trans. Inf. Theory, 55, 4, 1841–1855, 2009.
[2.16] Boltzmann, L., Uber die Mechanische Bedeutung des Zweiten Hauptsatzes der Warmetheorie [On the Mechanical Meaning of the Second Law of Heat Theory] [German]. Wien. Ber., 53, 195–220, 1866.
[2.17] Boltzmann, L., Vorlesungen uber Gastheorie, vol. I [Lectures on Gas Theory] [German], vol. 1, J. A. Barth, Leipzig, Germany, 1896.
[2.18] Boltzmann, L., Vorlesungen uber Gastheorie, [Lectures on Gas Theory] [German], vol. II, J. A. Barth, Leipzig, Germany, 1898.
[2.19] Bredov, D. and Volodyaev, I., Increasing complexity: Mechanical guidance and feedback loops as a basis for self-organization in morphogenesis. BioSystems, 173, 133–156, 2018.
[2.20] Burge, J., McCann, B.C., Geisler, W.S., Estimating 3D tilt from local image cues in natural scenes. J. Vision, 16, 13, 2, 1–25, 2016.
[2.21] Chaitin, G.J., Algorithmic information theory. Ibm J. Res. Dev., 21, 4, 350–359, 1977.
[2.22] Chakrabarti, C.G. and Ghosh, K., Biological evolution: Entropy, complexity and stability. J. Mod. Phys., 2, 6, 621–626, 2011.
[2.23] Chen, C.T., Linear System Theory and Design, 4th ed, Oxford University Press, New York, NY, USA, 2013.
[2.24] Chen, Q., Shi, J.C., Tao, Y., Zernicka-Goetz, M., Tracing the origin of heterogeneity and symmetry breaking in the early mammalian embryo. Nat. Commun., 9, 1819, 2018.
[2.25] Cox, E.J., Willis, L., Bentley, K., Integrated simulation with experimentation is a powerful tool for understanding diatom valve morphogenesis. BioSystems, 109, 3, Special Issue on Biological Morphogenesis, 450–459, 2012.
[2.26] Crutchfield, J.P. and Feldman, D.P., Regularities unseen, randomness observed: Levels of entropy convergence. Chaos, 13, 1, 25–54, 2003.
[2.27] Dammig, M. and Mitschke, F., Estimation of Lyapunov exponents from time series: The stochastic case. Phys. Lett. A, 178, 5–6, 385–394, 1993.
[2.28] De Martino, A., Amato, A., Bowler, C., Mitosis in diatoms: Rediscovering an old model for cell division. Bioessays, 31, 8, 874–884, 2009.
[2.29] Eckmann, J.P. and Ruelle, D., Ergodic theory of chaos and strange attractors. Rev. Mod. Phys., 57, 3, 617–656, 1985.
[2.30] Fernandes, L.F., New observations on frustule morphology of Eupodiscus radiatus Bailey and Fryxelliella floridana Prasad. Braz. J. Biol., 63, 3, 411–421, 2003.
[2.31] Fernandes, L.F. and de Souza-Mosimann, R.M., Triceratium moreirae sp. nov. and Triceratium dubium (Triceratiaceae-Bacillariophyta) from estuarine environments of southern Brazil, with comments on the genus Triceratium C. G. Ehrenberg. Braz. J. Biol., 61, 1, 159–170, 2001.
[2.32] Ferrell Jr., J.E., Bistability, bifurcations, and Waddington’s epigenetic landscape. Curr. Biol., 22, 11, R458-R466, 2012.
[2.33] Frey, F.M., Robertson, A., Bukoski, M., A method for quantifying rotational symmetry. New Phytol., 175, 4, 785–791, 2007.
[2.34] Gan, C.C. and Learmonth, G., Comparing entropy with tests for randomness as a measure of complexity in time series. arXiv preprint arXiv:1512.00725, 2015.
[2.35] Gao, J., Hu, J., Tun, W-w., Blasch, E., Multiscale analysis of biological data by scale-dependent Lyapunov exponent. Front. Physiol., 2, 110, 2012.
[2.36] Garrido, A., Symmetry in complex networks. Symmetry-Basel, 3, 1, 1–15, 2011.
[2.37] Ghobara, M.M., Mazumder, N., Vinayak, V., Reissig, L., Gebeshuber, I.C., Tiffany, M.A., Gordon, R., On light and diatoms: A photonics and photobiology review [Chapter 7], in: Diatoms: Fundamentals & Applications [DIFA, Volume 1 in the series: Diatoms: Biology & Applications, series editors: Richard Gordon & Joseph Seckbach], J. Seckbach and R. Gordon (Eds.), pp. 129–190, Wiley-Scrivener, Beverly, MA, USA, 2019.
[2.38] Gibson, R.A. and Mahoney, R.K., Comparative valve and cingular structure in Biddulphia titiana (Grunow) Grunow in Van Heurck and Trigonium arcticum (Brightwell) Cleve (Bacillariophyceae). Proc. Acad. Nat. Sci. Philadelphia, 136, 200–217, 1984.
[2.39] Ginelli, F., Chate, H., Livi, R., Politi, A., Covariant Lyapunov vectors. J. Phys. a-Math. Theor., 46, 25, 254005, 2013.
[2.40] Golubitsky, M. and Stewart, I., Recent advances in