Аннотация

Рабочая тетрадь по математике серии «ЕГЭ 2016. Математика» ориентирована на подготовку учащихся старшей школы к успешной сдаче единого государственного экзамена по математике в 2016 году по базовому и профильному уровням. В рабочей тетради представлены задачи по одной позиции контрольных измерительных материалов ЕГЭ-2016. На различных этапах обучения пособие поможет обеспечить уровневый подход к организации повторения, осуществить контроль и самоконтроль знаний по задачам, посвященным геометрическому смыслу производной. Рабочая тетрадь ориентирована на один учебный год, однако при необходимости позволит в кратчайшие сроки восполнить пробелы в знаниях выпускника. Тетрадь предназначена для учащихся старшей школы, учителей математики, родителей. Издание соответствует Федеральному государственному образовательному стандарту (ФГОС).

Аннотация

Пособия по математике серии «ЕГЭ 2016. Математика» ориентированы на подготовку учащихся старшей школы к успешной сдаче единого государственного экзамена по математике. В данном учебном пособии представлен материал для подготовки к решению задачи 16 профильного уровня. На различных этапах обучения пособие поможет обеспечить уровневый подход к организации повторения, осуществить контроль и самоконтроль знаний по планиметрии. Пособие предназначено для учащихся старшей школы, учителей математики, родителей. Издание соответствует новому Федеральному государственному образовательному стандарту (ФГОС).

Аннотация

Рабочая тетрадь по математике серии «ЕГЭ 2016. Математика» ориентирована на подготовку учащихся старшей школы к успешной сдаче единого государственного экзамена по математике в 2016 году по базовому и профильному уровням. В рабочей тетради представлены задачи по одной позиции контрольных измерительных материалов ЕГЭ-2016. На различных этапах обучения пособие поможет обеспечить уровневый подход к организации повторения, осуществить контроль и самоконтроль знаний по основным темам, связанным с решением задач на составление уравнений. Рабочая тетрадь ориентирована на один учебный год, однако при необходимости позволит в кратчайшие сроки восполнить пробелы в знаниях выпускника. Тетрадь предназначена для учащихся старшей школы, учителей математики, родителей. Издание соответствует Федеральному государственному образовательному стандарту (ФГОС).

Аннотация

Рабочая тетрадь по математике серии «ЕГЭ 2016. Математика» ориентирована на подготовку учащихся старшей школы к успешной сдаче единого государственного экзамена по математике в 2016 году по базовому и профильному уровням. В рабочей тетради представлены задачи по одной позиции контрольных измерительных материалов ЕГЭ-2016. На различных этапах обучения пособие поможет обеспечить уровневый подход к организации повторения, осуществить контроль и самоконтроль знаний по теме «Простейшие уравнения». Рабочая тетрадь ориентирована на один учебный год, однако при необходимости позволит в кратчайшие сроки восполнить пробелы в знаниях выпускника. Тетрадь предназначена для учащихся старшей школы, учителей математики, родителей. Издание соответствует Федеральному государственному образовательному стандарту (ФГОС).

Аннотация

Рабочая тетрадь по математике серии «ЕГЭ 2016. Математика» ориентирована на подготовку учащихся старшей школы к успешной сдаче единого государственного экзамена по математике в 2016 году по базовому и профильному уровням. В рабочей тетради представлены задачи по одной позиции контрольных измерительных материалов ЕГЭ-2016. На различных этапах обучения пособие поможет обеспечить уровневый подход к организации повторения, осуществить контроль и самоконтроль знаний по теме «Производная и первообразная. Исследование функций». Рабочая тетрадь ориентирована на один учебный год, однако при необходимости позволит в кратчайшие сроки восполнить пробелы в знаниях выпускника. Тетрадь предназначена для учащихся старшей школы, учителей математики, родителей. Издание соответствует Федеральному государственному образовательному стандарту (ФГОС).

Аннотация

Двенадцатая книжка серии «Школьные математические кружки» посвящена одному из фундаментальных понятий математики – непрерывности и предназначена для занятий со школьниками 7–11 классов. В неё вошли разработки девяти занятий математического кружка с подробно разобранными примерами различной сложности, задачами для самостоятельного решения и методическими указаниями для учителя. В приложении содержится список дополнительных задач и их решения. Отдельная часть этого раздела посвящена строгим формулировкам определений непрерывности и её свойств, а также формулировкам утверждений более высокого уровня, которые практически являются теоремами и фактами высшей математики. Для удобства использования заключительная часть книжки, как всегда, сделана в виде раздаточных материалов. Книжка адресована школьным учителям математики и руководителям математических кружков. Надеемся, что она будет интересна школьникам и их родителям, студентам педагогических вузов, а также всем любителям математики.

Аннотация

Настоящая книга является переработанным и дополненным изданием сборника «Колмогоров в воспоминаниях» (Наука, 1993). В книге приведены список учеников А.Н. Колмогорова и некоторые биографические материалы.

Аннотация

Методы, используемые современной топологией, весьма разнообразны. В этой книге подробно рассматриваются методы комбинаторной топологии, которые заключаются в исследовании топологических пространств посредством их разбиений на какие-то элементарные множества, и методы дифференциальной топологии, которые заключаются в рассмотрении гладких многообразий и гладких отображений. Нередко одну и ту же топологическую задачу можно решить как комбинаторными методами, так и дифференциальными. В таких случаях обсуждаются оба подхода. Одна из главных целей книги состоит в том, чтобы продвинуться в изучении свойств топологических пространств (и особенно многообразий) столь далеко, сколь это возможно без привлечения сложной техники. Этим она отличается от большинства книг по топологии. Книга содержит много задач и упражнений. Почти все задачи снабжены подробными решениями.

Аннотация

Фармакология и медицина являются одними из крайне перспективных областей для применения современных методов интеллектуального анализа данных и распознавания образов. В этих областях существует значительное количестве задач распознавания, эффективное решение которых весьма важно для фундаментальных прорывов в современной медицине. Однако, задолго до того как задача будет формализована для поиска решений в рамках машинного обучения и распознавания образов, необходим предварительный экспертный анализ огромного массива имеющихся биомедицинских данных. В настоящей монографии описываются существенные шаги, необходимые для адекватного анализа на этой предварительной, одной из самых важных стадий анализа данных. Представлено описание математических и биофизических методов, использованных для решения соответствующих задач молекулярной и клинической фармакологии. Книга адресована прежде всего широкому кругу врачей, фармакологов, биохимиков и, также, студентам медико-биологических вузов но, в то же время, может быть весьма интересна для специалистов в области машинного обучения. Читателю предлагается книга, освещающая различные дискуссионные аспекты молекулярной фармакологии в применении к конкретным препаратам и направлениям фармакотерапии. Следует отметить, что многие достижения фундаментальных и клинических исследований в области фармакологии препаратов известны только узкому кругу специалистов. В результате, возникает разрыв между новейшими научными данными и методами биоинформационного анализа, с одной стороны, и информированностью большинства практикующих врачей и исследователей области биомедицины, с другой. В ряде глав представлено краткое описание математических и биофизических методов, использованных для решения соответствующих задач молекулярной и клинической фармакологии. Книга адресована широкому кругу врачей, фармакологов, биохимиков и, также, студентам медико-биологических вузов.

Аннотация

Книга содержит записи курсов лекций, прочитаных академиком В.И. Арнольдом в 2005 г. в Дубне, на летней школе «Современная математика». В книге рассказывается о нескольких новых направлениях математических исследований, основанных на численных экспериментах.