Аннотация

Rivers are the great shapers of terrestrial landscapes. Very few points on Earth above sea level do not lie within a drainage basin. Even points distant from the nearest channel are likely to be influenced by that channel. Tectonic uplift raises rock thousands of meters above sea level. Precipitation falling on the uplifted terrain concentrates into channels that carry sediment downward to the oceans and influence the steepness of adjacent hill slopes by governing the rate at which the landscape incises. Rivers migrate laterally across lowlands, creating a complex topography of terraces, floodplain wetlands and channels. Subtle differences in elevation, grain size, and soil moisture across this topography control the movement of ground water and the distribution of plants and animals. Rivers in the Landscape, Second Edition, emphasizes general principles and conceptual models, as well as concrete examples of each topic drawn from the extensive literature on river process and form. The book is suitable for use as a course text or a general reference on rivers. Aimed at advanced undergraduate students, graduate students, and professionals looking for a concise summary of physical aspects of rivers, Rivers in the Landscape is designed to: emphasize the connectivity between rivers and the greater landscape by explicitly considering the interactions between rivers and tectonics, climate, biota, and human activities; provide a concise summary of the current state of knowledge for physical process and form in rivers; reflect the diversity of river environments, from mountainous, headwater channels to large, lowland, floodplain rivers and from the arctic to the tropics; reflect the diverse methods that scientists use to characterize and understand river process and form, including remote sensing, field measurements, physical experiments, and numerical simulations; reflect the increasing emphasis on quantification in fluvial geomorphology and the study of Earth surfaces in general; provide both an introduction to the classic, foundational papers on each topic, and a guide to the latest, particularly insightful and integrative references.

Аннотация

Rivers in the Landscape: Science and Management offers a comprehensive and accessible overview of the current state of knowledge for river process and form, taking a holistic approach to the subject with coverage of integrated river science and management in practice. The processes and forms present in channelized surface flow–rivers–are systematically explored in this book to • emphasize the connectivity between rivers and the greater landscape by explicitly considering the interactions between rivers and tectonics, climate, biota, and human activities; • provide a concise summary of the current state of knowledge for physical process and form in rivers; • reflect the diversity of river environments, from mountainous, headwater channels to large, lowland, floodplain rivers and from the arctic to the tropics; • reflect the diverse methods that scientists use to characterize and understand river process and form, including remote sensing, field measurements, physical experiments, and numerical simulations; • reflect the increasing emphasis on quantification in fluvial geomorphology and the study of Earth surfaces in general; • provide both an introduction to the classic, foundational papers on each topic, and a guide to the latest, particularly insightful and integrative references. Aimed at advanced undergraduate students, graduate students, and professionals looking for a concise summary of physical aspects of rivers, this book emphasizes general principles and conceptual models, as well as concrete examples of each topic drawn from the extensive literature on river process and form.

Аннотация

Published by the American Geophysical Union as part of the Water Resources Monograph Series, Volume 19. What are the forms and processes characteristic of mountain rivers and how do we know them? Mountain Rivers Revisited, an expanded and updated version of the earlier volume Mountain Rivers, answers these questions and more. Here is the only comprehensive synthesis of current knowledge about mountain rivers available. While continuing to focus on physical process and form in mountain rivers, the text also addresses the influences of tectonics, climate, and land use on rivers, as well as water chemistry, hyporheic exchange, and riparian and aquatic ecology. With its numerous illustrations and references, hydrologists, geomorphologists, civil and environmental engineers, ecologists, resource planners, and their students will find this book an essential resource. Ellen Wohl received her Ph.D. in geology in 1988 from the University of Arizona. Since then, she has worked primarily on mountain and bedrock rivers in diverse environments.