Аннотация

This helpful resource covers a large range of information regarding electrical actuators. In particular, robustness, a very problematic issue, is fully explored in a dedicated chapter. The text also deals with he estimate of non-measurable mechanical variables by examining the estimate of load moment, then observation of the positioning of a command without mechanical sensor. Finally, it examines the conditions needed to measure variables and real implementation of numerical algorithms. This is a key working resource for electrical engineers.

Аннотация

Synchronous motors are indubitably the most effective device to drive industrial production systems and robots with precision and rapidity. Their control law is thus critical for combining at the same time high productivity to reduced energy consummation. As far as possible, the control algorithms must exploit the properties of these actuators. Therefore, this work draws on well adapted models resulting from the Park’s transformation, for both the most traditional machines with sinusoidal field distribution and for machines with non-sinusoidal field distribution which are more and more used in industry. Both, conventional control strategies like vector control (either in the synchronous reference frame or in the rotor frame) and advanced control theories like direct control and predictive control are thoroughly presented. In this context, a significant place is reserved to sensorless control which is an important and critical issue in tomorrow’s motors.

Аннотация

Classical synchronous motors are the most effective device to drive industrial production systems and robots with precision and rapidity. However, numerous applications require efficient controls in non-conventional situations. Firstly, this is the case with synchronous motors supplied by thyristor line-commutated inverters, or with synchronous motors with faults on one or several phases. Secondly, many drive systems use non-conventional motors such as polyphase (more than three phases) synchronous motors, synchronous motors with double excitation, permanent magnet linear synchronous motors, synchronous and switched reluctance motors, stepping motors and piezoelectric motors. This book presents efficient controls to improve the use of these non-conventional motors. Contents 1. Self-controlled Synchronous Motor: Principles of Function and Simplified Control Model, Francis Labrique and François Baudart. 2. Self-controlled Synchronous Motor: Dynamic Model Including the Behavior of Damper Windings and Commutation Overlap, Ernest Matagne. 3. Synchronous Machines in Degraded Mode, Damien Flieller, Ngac Ky Nguyen, Hervé Schwab and Guy Sturtzer. 4. Control of the Double-star Synchronous Machine Supplied by PWM Inverters, Mohamed Fouad Benkhoris. 5. Vectorial Modeling and Control of Multiphase Machines with Non-salient Poles Supplied by an Inverter, Xavier Kestelyn and Éric Semail. 6. Hybrid Excitation Synchronous Machines, Nicolas Patin and Lionel Vido. 7. Advanced Control of the Linear Synchronous Motor, Ghislain Remy and Pierre-Jean Barre. 8. Variable Reluctance Machines: Modeling and Control, Mickael Hilairet, Thierry Lubin and Abdelmounaïm Tounzi. 9. Control of the Stepping Motor, Bruno Robert and Moez Feki . 10. Control of Piezoelectric Actuators, Frédéric Giraud and Betty Lemaire-Semail.