Аннотация

FROM REVIEWS OF THE SERIES «Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry.» -JOURNAL OF MOLECULAR GRAPHICS AND MODELLING «One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general).» -JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Аннотация

This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics covered in Volume 18 include molecular modeling, computer-assisted molecular design (camd), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (qsar).

Аннотация

Computational chemistry is increasingly used in most areas of molecular science including organic, inorganic, medicinal, biological, physical, and analytical chemistry. Researchers in these fields who do molecular modelling need to understand and stay current with recent developments. This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Two chapters focus on molecular docking, one of which relates to drug discovery and cheminformatics and the other to proteomics. In addition, this volume contains tutorials on spin-orbit coupling and cellular automata modeling, as well as an extensive bibliography of computational chemistry books. FROM REVIEWS OF THE SERIES «Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry.»—JOURNAL OF MOLECULAR GRAPHICS AND MODELLING «One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general).»—JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Аннотация

Computational chemistry is increasingly used in conjunction with organic, inorganic, medicinal, biological, physical, and analytical chemistry, biotechnology, materials science, and chemical physics. This series is essential in keeping those individuals involved in these fields abreast of recent developments in computational chemistry.

Аннотация

VOLUME 25 Reviews in Computational Chemistry Kenny B. Lipkowitz and Thomas R. Cundari This Volume, Like Those Prior To It, Features Pedagogically Driven Reviews By Experts In Various Fields Of Computational Chemistry. Volume 25 Contains: Eight Chapters Covering The Glass Transition In Polymer Melts, Atomistic Modeling Of Friction, The Computation Of Free Volume, Structural Order And Entropy Of Liquids And Glasses, The Reactivity Of Materials At Extreme Conditions, Magnetic Properties Of Transition Metal Clusters, Multiconfigurational Quantum Methods For The Treatment Of Heavy Metals, Recursive Solutions To Large Eigenvalue Problems, And The Development And Uses Of Artificial Intelligence In Chemistry. From Reviews of the Series «Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry.» -JOURNAL OF MOLECULAR GRAPHICS AND MODELLING «One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general).» -JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Аннотация

Volume 16 Reviews In Computational Chemistry Kenny B. Lipkowitz and Donald B. Boyd The focus of this book is on methods useful in molecular design. Tutorials and reviews span (1) methods for designing compound libraries for combinatorial chemistry and high throughput screening, (2) the workings of artificial neural networks and their use in chemistry, (3) force field methods for modeling materials and designing new substances, and (4) free energy perturbation methods of practical usefulness in ligand design. From Reviews of the Series «This series spans all the subdisciplines in the field, from techniques to practical applications, and includes reviews from many of the acknowledged leaders in the field. the reviews cross many subdisciplines yet are both general enough to be of wide interest while including detailed information of use to workers in particular subdisciplines.» -Journal of the American Chemical Society

Аннотация

THIS VOLUME, WHICH IS DESIGNED FOR STAND-ALONE USE IN TEACHING AND RESEARCH, FOCUSES ON QUANTUM CHEMISTRY, AN AREA OF SCIENCE THAT MANY CONSIDER TO BE THE CENTRAL CORE OF COMPUTATIONAL CHEMISTRY. TUTORIALS AND REVIEWS COVER * HOW TO OBTAIN SIMPLE CHEMICAL INSIGHT AND CONCEPTS FROM DENSITY FUNCTIONAL THEORY CALCULATIONS, * HOW TO MODEL PHOTOCHEMICAL REACTIONS AND EXCITED STATES, AND * HOW TO COMPUTE ENTHALPIES OF FORMATION OF MOLECULES. A FOURTH CHAPTER TRACES CANADIAN RESEARCH IN THE EVOLUTION OF COMPUTATIONAL CHEMISTRY. ALSO INCLUDED WITH THIS VOLUME IS A SPECIAL TRIBUTE TO QCPE.FROM REVIEWS OF THE SERIES «Reviews in Computational Chemistry proves itself an invaluable resource to the computational chemist. This series has a place in every computational chemist's library.»-Journal of the American Chemical Society

Аннотация

THIS VOLUME, WHICH IS DESIGNED FOR STAND-ALONE USE IN TEACHING AND RESEARCH, FOCUSES ON QUANTUM CHEMISTRY, AN AREA OF SCIENCE THAT MANY CONSIDER TO BE THE CENTRAL CORE OF COMPUTATIONAL CHEMISTRY. TUTORIALS AND REVIEWS COVER * HOW TO OBTAIN SIMPLE CHEMICAL INSIGHT AND CONCEPTS FROM DENSITY FUNCTIONAL THEORY CALCULATIONS, * HOW TO MODEL PHOTOCHEMICAL REACTIONS AND EXCITED STATES, AND * HOW TO COMPUTE ENTHALPIES OF FORMATION OF MOLECULES. * A FOURTH CHAPTER TRACES CANADIAN RESEARCH IN THE EVOLUTION OF COMPUTATIONAL CHEMISTRY. * ALSO INCLUDED WITH THIS VOLUME IS A SPECIAL TRIBUTE TO QCPE. FROM REVIEWS OF THE SERIES «Reviews in Computational Chemistry proves itself an invaluable resource to the computational chemist. This series has a place in every computational chemist's library.»-JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Аннотация

THIS BOOK HAS SIX TUTORIALS AND REVIEWS WRITTEN BY INVITED EXPERTS. FIVE CHAPTERS TEACH TOPICS IN QUANTUM MECHANICS AND MOLECULAR SIMULATIONS. THE SIXTH CHAPTER EXPLAINS HOW PROGRAMS FOR CHEMICAL STRUCTURE DRAWING WORK. AN EDITORIAL DISCUSSES SOME OF THE MOST WELL-KNOWN PERSONAGES IN COMPUTATIONAL CHEMISTRY. FROM REVIEWS OF THE SERIES «Anyone who is doing or intends to do computational research on molecular structure and design should seriously consider purchasing this book for his or her personal library.»-JOURNAL OF COMPUTATIONAL CHEMISTRY. «These reviews are becoming regarded as the standard reference among both specialists and novices in the expanding field of computational chemistry.» -JOURNAL OF MOLECULAR GRAPHICS AND MODELLING. «[This book is] written for newcomers learning about molecular modeling techniques as well as for seasoned professionals who need to acquire expertise in areas outside their own.»-JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCE.

Аннотация

VOLUME 12: REVIEWS IN COMPUTATIONAL CHEMISTRY Kenny B. Lipkowitz and Donald B. Boyd HOW DOES ONE COMPUTE FREE ENERGY AND ENTROPY FROM MOLECULAR SIMULATIONS? WHAT HAPPENS WHEN SIMULATIONS ARE RUN WITH CONSTRAINTS? HOW SHOULD SIMULATIONS BE PERFORMED TO MODEL INTERFACIAL PHENOMENA? HOW IS DENSITY FUNCTIONAL THEORY USED TO SIMULATE MATERIALS? WHAT QUANTUM MECHANICAL METHODS SHOULD BE USED TO COMPUTE NONLINEAR OPTICAL PROPERTIES OF MATERIALS? WHICH PARAMETERS ARE MOST INFLUENTIAL IN A MOLECULAR SIMULATION? HOW CAN CRYSTAL STRUCTURES BE PREDICTED? TUTORIALS PROVIDING ANSWERS TO THESE QUESTIONS ARE THE FOCUS OF THIS BOOK. FROM REVIEWS OF THE SERIES «The series continues to be one of the most useful information sources.» —JOURNAL OF THE AMERICAN CHEMICAL SOCIETY