Скачать книгу

compared to the extraordinary wave in all directions except along the y‐axis.

      The phase velocities vp1 and vp2 of the ordinary and extraordinary waves using equations (4.7.26a) and (4.7.27a) are expressed through the following relations [B.3]:

      (4.7.28)equation

      The phase velocity vp1 of the ordinary wave is independent of the angle θ. However, the phase velocity vp2 of the extraordinary wave is dependent on the angle θ. In Figure (4.15b), both velocities are identical only for the wave propagation along the z‐optic axis.

      Finally, it is possible to artificially realize a uniaxial anisotropic material with one of the permittivity components as a negative quantity, say εr⊥ = − |εr⊥|. In this case, equation (4.7.26d) shows the hyperbolic dispersion relation. This medium is known as the hypermedium. It supports the wave propagation with a larger value of wavenumbers and can convert an incident evanescent wave to the propagating waves. Such engineered materials are needed by the hyperlens [J.1, J.7]. Figure (4.15d) shows the dispersion relation of the hypermedium with phase and group velocities. In this case, y‐components of vp and vg are opposite to each other. So, the hypermedium supports the backward wave propagation, and it is a metamaterial medium. The hyperlens is discussed in the subsection (5.5.6) of chapter 5.

      Books

      1 B.1 Baden‐Fuller, A.J.: Microwaves, 3rd Edition, Pergamon Press, New York, 1990.

      2 B.2 Jordan, E.C.; Balmain Keith, G.E.: Electromagnetic Wave and Radiating System, Prentice‐Hall India, New Delhi, 1989.

      3 B.3 Ramo, S.; Whinnery, J.R.; Van Duzer, T.: Fields, and Waves in Communication Electronics, 3rd Edition, John Wiley & Sons, Singapore, 1994.

      4 B.4 Collin, R.E.: Foundations for Microwave Engineering, 2nd Edition, McGraw‐Hill, Inc., New York, 1992.

      5 B.5 Rao, N.N.: Elements of Engineering Electromagnetics, 3rd Edition, Prentice‐Hall, Englewood Cliff, NJ, 1991.

      6 B.6 Sadiku, M.N.O.: Elements of Electromagnetics, 3rd Edition, Oxford University Press, New York, 2001.

      7 B.7 Cheng, D.K.: Fields and Wave Electromagnetics, 2nd Edition, Pearson Education, Singapore, 1989.

      8 B.8 Weeks, W.L.: Electromagnetic Theory for Engineering Applications, John Wiley & Sons, New York, 1964.

      9 B.9 Balanis, C.A.: Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 1989.

      10 B.10 Hipple, A. Von: Dielectrics, and Waves, Artech House, Norwood, MA, 1995.

      11 B.11 Plonsey, R.; Collin, R.E.: Principle and Applications of Electromagnetic Fields, TMH, New Delhi, 1973.

      12 B.12 Polivanov, K.: The Theory of Electromagnetic Fields, Mir Publisher, Moscow, 1975.

      13 B.13 Orfanidis, S.J.: Electromagnetic Waves and Antenna, Free Book on the Web.

      14 B.14 Staelin, D.H.; Morgenthaler, A.W.; Kong, J.A.: Electromagnetic Waves, Prentice‐Hall, Englewood Cliffs, NJ, 1994.

      15 B.15 Landau, L.D.; Lifshitz, E.M.; Pitaevskii, L.P.: Electrodynamics of Continuous Media, Pergamon Press, New York, 1984.

      16 B.16 Engheta, N.; Ziolkowski, R.W. (Editors): Metamaterials: Physics and Engineering Explorations, Wiley‐Interscience, John Wiley & Sons, Inc., Hoboken, NJ, 2006.

      17 B.17 Lakhtakia, A.; Varadan, V.K.; Varadan, V.V.: Time‐Harmonic Electromagnetic Fields in Chiral Media, Springer‐Verlag, Berlin, Heidelberg, 1989.

      18 B.18 Born, M.; Wolf, E.: Principles of Optics, 6th Edition, Pergamon Press, New York, 1980.

      19 B.19 Haus, H.A.: Waves and Fields in Optoelectronics, Prentice‐Hall, Englewood Cliffs, NJ, 1984.

      20 B.20 Yariv, A.; Yeh, P.: Optical Waves in Crystals, Wiley, New York, 1984.

      21 B.21 Kong, J.A.: Electromagnetic Wave Theory, Wiley, New York, 1986.

      22 B.22 Mackay, T.G.; Lakhtakia, A.: Electromagnetic Anisotropy and Bianisotropy: A Field Guide, World Scientific, Singapore, 2010.

      23 B.23 Lindell, I.V.; Sihvola, A.H.; Tretyakov, S.A.; Viitanen, A.J.: Electromagnetic Waves in Chiral and Bi‐anisotropic Media, Artech House, Boston, MA, 1994.

      24 B.24 Hoffmann, R.: Microwave Integrated Circuit Handbook, Artech House, Boston, MA, 1985.

      25 B.25 Capolino, F. (Editor): Theory and Phenomena of Metamaterials, CRC Press, Boca Raton, FL, 2009.

      26 B.26 The Heaviside Centenary Volume, The Institution of Electrical Engineers, London, 1950.

      27 B.27 Whittaker, E.T.: Oliver Heaviside, In Electromagnetic Theory, Vol. 1, Oliver Heaviside, Reprint, Chelsea Pub. Co., New York, 1971.

      28 B.28 Behrend, B.A.: The work of Oliver Heaviside, In Electromagnetic Theory, Vol. 1, Oliver Heaviside, Reprint, Chelsea Pub. Co., New York, 1971.

      29 B.29 Kraus, J.D.: Antenna, 2nd Edition, McGraw‐Hill, 1988.

      30 B.30 Collett, E.: Polarized Light: Fundamentals and Applications, Marcel Dekker, Inc., 1993.

      31 B.31 Saleh, B.E.A.; Teich, M.C.: Fundamental of Photonics, Wiley, New York, 1991.

      Journals

      1 J.1 Jacob, Z.; Alekseyev, L.V.; Narimanov, E.: Optical hyperlens: far‐field imaging beyond the diffraction limit, Opt. Express, Vol. 14, No. 18, pp. 8247–8256, 2006.

      2 J.2 Lee, H. et al.: Development of optical hyperlens for imaging below the diffraction limit, Opt. Express, Vol. 15, pp. 15886–15891, 2007.

      3 J.3 Seddon, N.; Bearpark, T.: Observation of the inverse Doppler effect, Science, Vol. 302, pp. 1537–1539, Nov. 2003.

      4 J.4 Mosallaei, H.; Sarabandi, K.: Magneto‐dielectrics in electromagnetics: concept and applications, IEEE Trans. Ant. Propagat., Vol. 52, No. 6, pp. 1558–1567, June 2004.

      5 J.5 Alu, A.; Engheta, N.: Pairing an epsilon–negative slab with a mu‐negative slab: anomalous tunneling and transparency, IEEE Trans. Antenna Proag., Special Issue on Metamaterials, Vol. 51, No. 10, pp. 2558–2570, Oct. 2003.

      6 J.6 Lee, H.; Xiong, Y.; Fang, N.; Srituravanich, N.; Durant, S.; Ambati, M.; Sun, C.; Zhang, X.: Realization of optical superlens imaging below the diffraction limit, New Journal of Physics, Vol. 7, No. 255, pp. 1–16, 2005.

      7 J.7 Kim, M.; Rho, J.: Metamaterials and imaging, Nano Convergence, Vol. 2, No. 22, pp. 1–16, 2015.

      Introduction

      The characteristics of material media and EM‐waves propagation in unbounded media are discussed in the previous chapter 4. Continuing the topics, this chapter is about the normal and oblique incidence of EM‐waves at the interface of two media. The characteristics of both the normal and oblique incident EM‐waves are obtained using an analytical method and convenient equivalent transmission line models. Under certain conditions, the interface surface of two media could acquire the property of a perfect electric conductor (PEC), or perfect magnetic conductor (PMC), or

Скачать книгу