Скачать книгу

target="_blank" rel="nofollow" href="#fb3_img_img_d75ae3ef-c198-5f71-aab1-5673b48c0698.png" alt="StartLayout 1st Row 1st Column nabla times bold upper E Superscript asterisk 2nd Column equals minus bold upper K Superscript asterisk Baseline minus j omega bold upper B Superscript asterisk Baseline comma EndLayout"/>

      (2.41a)StartLayout 1st Row 1st Column bold upper E dot nabla times bold upper H Superscript asterisk minus bold upper H Superscript asterisk Baseline dot nabla times bold upper E 2nd Column equals bold upper E dot bold upper J Superscript asterisk Baseline plus j omega bold upper E dot bold upper D Superscript asterisk Baseline plus bold upper H Superscript asterisk Baseline dot bold upper K plus j omega bold upper H Superscript asterisk Baseline dot bold upper B comma EndLayout

      (2.41b)StartLayout 1st Row 1st Column bold upper E Superscript asterisk Baseline dot nabla times bold upper H minus bold upper H dot nabla times bold upper E Superscript asterisk 2nd Column equals bold upper E Superscript asterisk Baseline dot bold upper J plus j omega bold upper E Superscript asterisk Baseline dot bold upper D plus bold upper H dot bold upper K Superscript asterisk Baseline plus j omega bold upper H dot bold upper B Superscript asterisk Baseline period EndLayout

      Using the identity bold upper A dot nabla times bold upper B minus bold upper B dot nabla times bold upper A equals minus nabla dot left-parenthesis bold upper A times bold upper B right-parenthesis reduces these equations to

      (2.43)StartLayout 1st Row 1st Column nabla dot left-parenthesis bold upper E times bold upper H Superscript asterisk Baseline minus bold upper E Superscript asterisk Baseline times bold upper H right-parenthesis 2nd Column equals j omega left-parenthesis bold upper E Superscript asterisk Baseline dot bold upper D minus bold upper E dot bold upper D Superscript asterisk Baseline plus bold upper H dot bold upper B Superscript asterisk Baseline minus bold upper H Superscript asterisk Baseline dot bold upper B right-parenthesis 2nd Row 1st Column Blank 2nd Column plus bold upper E Superscript asterisk Baseline dot bold upper J minus bold upper E dot bold upper J Superscript asterisk Baseline plus bold upper H dot bold upper K Superscript asterisk Baseline minus bold upper H Superscript asterisk Baseline dot bold upper K period EndLayout

      We may now integrate this equation over the volume upper V and apply the Gauss theorem, which gives

      which represents a fundamental relation for reciprocity. We next include the bianisotropic material parameters in this relation. For this purpose, we use the bianisotropic constitutive relations (2.4), which may be explicitly rewritten as

      (2.46b)StartLayout 1st 
				<p style= Скачать книгу