Скачать книгу

href="#ulink_2a4f3778-1952-572c-9b14-b42a658e51eb">2.28) corresponds to general second-order weak spatial dispersion constitutive relations. The presence of the spatial derivatives makes it practically cumbersome, and we shall therefore transform it into a simpler form [148]. For simplicity, we restrict our attention to the isotropic version of (2.28), which may be written as [29]

      (2.30b)StartLayout 1st Row 1st Column bold upper H prime 2nd Column equals bold upper H plus j omega bold upper Q comma EndLayout

      (2.32)nabla times bold upper H Superscript prime Baseline minus j omega nabla times bold upper Q equals j omega bold upper D Superscript prime Baseline minus j omega nabla times bold upper Q comma

      which clearly reduces to

      (2.34b)StartLayout 1st Row 1st Column bold upper H prime 2nd Column equals bold upper H plus j omega bold upper Q 1 equals mu 0 Superscript negative 1 Baseline bold upper B minus j omega StartFraction alpha Over 2 EndFraction bold upper E period EndLayout

      (2.35a)StartLayout 1st Row 1st Column bold upper D prime 2nd Column equals epsilon bold upper E minus j omega StartFraction alpha Over 2 EndFraction bold upper B plus beta nabla nabla dot bold upper E plus nabla times left-parenthesis minus j omega gamma bold upper B right-parenthesis comma EndLayout

      (2.35b)StartLayout 1st Row 1st Column bold upper H prime 2nd Column equals mu 0 Superscript negative 1 Baseline bold upper B minus j omega StartFraction alpha Over 2 EndFraction bold upper E period EndLayout

      Finally substituting these relations with bold upper Q 2 equals minus j omega gamma bold upper B into (2.30) leads to the relations

      (2.36a)StartLayout 1st Row 1st Column bold upper D 2nd Column equals bold upper D prime minus nabla times bold upper Q 2 equals epsilon bold upper E minus j omega StartFraction alpha Over 2 EndFraction bold upper B plus beta nabla nabla dot bold upper E comma EndLayout

      (2.36b)StartLayout 1st Row 1st Column bold upper H 2nd Column equals bold upper H minus j omega bold upper Q 2 equals mu 0 Superscript negative 1 Baseline bold upper B minus j omega StartFraction alpha Over 2 EndFraction bold upper E minus omega squared gamma bold upper B comma EndLayout

      which take the compact form

      (2.37b)StartLayout 1st Row 1st Column bold upper H 2nd Column equals mu Superscript negative 1 Baseline bold upper B minus j nu bold upper E comma EndLayout