Скачать книгу

front of the sclera. Those on the side of the sclera were less marked, and, owing to the difficulty of photographing a white image on a white background, could not always be readily seen on the photographs. They were always plainly apparent, however, to the observer, and still more so to the subject, who regarded them in a concave mirror. The alterations in the size of the corneal image were so slight that they did not show at all in the photographs, except when the image was large, a fact which explains why the ophthalmometer, with its small image, has been thought to show that the cornea did not change during accommodation. They were always apparent, however, to the subject and observer.

      Fig. 33. Demonstrating That the Back of the Lens Does Not Change During Accommodation.The filament of an electric light (L) is shining into the eye of the subject (S), and the reflection on the back of the lens can be seen by the observer (O) in the telescope (T). The subject holds in her hand, at a distance of four inches, a mirror on which is pasted a small letter, and in which is reflected a Snellen test card hung above and behind her head at a distance of twenty feet. The retinoscope reveals that when she looks at the reflection of the test card and reads the bottom line the eye is at rest, and that when she looks at the letter pasted on the mirror it accommodates. The image on the lens does not change during these changes of focus. The telescope is the telescope of the ophthalmometer, the prisms having been removed. As there is no dispute about the behavior of the back of the lens during accommodation this image was not photographed.

       The corneal image was one of the easiest of the series to produce and the experiment is one which almost anyone can repeat, the only apparatus required being a fifty-candlepower lamp - an ordinary electric globe - and a concave mirror fastened to a rod which moves back and forth in a groove so that the distance of the mirror from the eye can be altered at will. A plane mirror might also be used; but the concave glass is better, because it magnifies the image. The mirror should be so arranged that it reflects the image of the electric filament on the cornea, and so that the eye of the subject can see this reflection by looking straight ahead. The image in the mirror is used as the point of fixation, and the distance at which the eye focuses is altered by altering the distance of the mirror from the eye. The light can be placed within an inch or two of the eye, as the heat is not great enough to interfere with the experiment. The closer it is the larger the image, and according to whether it is adjusted vertically, horizontally, or at an angle, the clearness of the reflection may vary. A blue glass screen can be used, if desired, to lessen the discomfort of the light. If the left eye is used by the subject - and in all the experiments it was found to be the more convenient for the purpose - the source of light should be placed to the left of that eye and as much as possible to the front of it, at an angle of about forty-five degrees. For absolute accuracy the light and the head of the subject should be held immovable, but for demonstration this is not essential. Simply holding the bulb in his hand the subject can demonstrate that the image changes according to whether the eye is at rest, accommodating normally for near vision, or straining to see at a near or a distant point.

      In the original report were described possible sources of error and the means taken to eliminate them.

       CHAPTER VI - THE TRUTH ABOUT ACCOMMODATION AS DEMONSTRATED BY CLINICAL OBSERVATIONS

       Table of Contents

       THE testimony of the experiments described in the preceding chapters to the effect that the lens is not a factor in accommodation is confirmed by numerous observations on the eyes of adults and children, with normal vision, errors of refraction, or amblyopia, and on the eyes of adults after the removal of the lens for cataract.

      It has already been pointed out that the instillation of atropine into the eye is supposed to prevent accommodation by paralyzing the muscle credited with controlling the shape of the lens. That it has this effect is stated in every text-book on the subject,1 and the drug is daily used in the fitting of glasses for the purpose of eliminating the supposed influence of the lens upon refractive states.

      In about nine cases out of ten the conditions resulting from the instillation of atropine into the eye fit the theory upon which its use is based; but in the tenth case they do not, and every ophthalmologist of any experience has noted some of these tenth cases. Many of them are reported in the literature, and many of them have come under my own observation. According to the theory, atropine ought to bring out latent hypermetropia in eyes either apparently normal, or manifestly hypermetropic, provided, of course, the patient is of the age during which the lens is supposed to retain its elasticity. The fact is that it sometimes produces myopia, or changes hypermetropia into myopia, and that it will produce both myopia and hypermetropia in persons over seventy years of age, when the lens is supposed to be as hard as a stone, as well as in cases in which the lens is hard with incipient cataract. Patients with eyes apparently normal will, after the use of atropine, develop hypermetropic astigmatism, or myopic astigmatism, or compound myopic astigmatism, or mixed astigmatism.2 In other cases the drug will not interfere with the accommodation, or alter the refraction in any way. Furthermore, when the vision has been lowered by atropine the subjects have often become able, simply by resting their eyes, to read diamond type at six inches. Yet atropine is supposed to rest the eyes by affording relief to an overworked muscle.

      In the treatment of squint and amblyopia I have often used atropine in the better eye for more than a year, in order to encourage the use of the amblyopic eye; and at the end of this time, while still under the influence of atropine, such eyes have become able in a few hours, or less, to read diamond type at six inches (see Chapter XXII). The following are examples of many similar cases that might be cited:

      A boy of ten had hypermetropia in both eyes, that of the left or better eye amounting to three diopters. When atropine was instilled into this eye the hypermetropia was increased to four and a half diopters, and the vision lowered to 20/200. With a convex glass of four and a half diopters the patient obtained normal vision for the distance, and with the addition of another convex glass of four diopters he was able to read diamond type at ten inches (best). The atropine was used for a year, the pupil being dilated continually to the maximum. Meantime the right eye was being treated by methods to be described later. Usually in such cases the eye which is not being specifically treated improves to some extent with the others, but in this case it did not. At the end of the year the vision of the right eye had become normal; but that of the left eye remained precisely what it was at the beginning, being still 20/200 without glasses for the distance, while reading without glasses was impossible and the degree of the hypermetropia had not changed. Still under the influence of the atropine and still with the pupil dilated to the maximum, this eye was now treated separately; and in half an hour its vision had become normal both for the distance and the nearpoint, diamond type being read at six inches, all without glasses. According to the accepted theories, the ciliary muscle of this eye must not only have been completely paralyzed at the time, but must have been in a state of complete paralysis for a year. Yet the eye not only overcame four and a half diopters of hypermetropia, but added six diopters of accommodation, making a total of ten and a half. It remains for those who adhere to the accepted theories to say how such facts can be reconciled with them.

      Equally, if not more remarkable, was the case of a little girl of six who had two and a half diopters of hypermetropia in her right or better eye, and six in the other, with one diopter of astigmatism. With the better eye under the influence of atropine and the pupil dilated to the maximum, both eyes were treated together for more than a year, and at the end of that time, the right being still under the influence of the atropine, both became able to read diamond type at six inches, the right doing it better, if anything, than the left. Thus, in spite of the atropine, the right eye not only overcame two and a half diopters of hypermetropia, but added six diopters of accommodation, making a total of eight and a half. In order to eliminate all possibility of latent hypermetropia in the left eye - which in the beginning had six diopters - the atropine was now used in this eye and discontinued in the other, the eye

Скачать книгу