Скачать книгу

Архимеда с использованием треугольников было очень близко к идее предела и бесконечно малых, без их действительного открытия. В своих более поздних работах Архимед вычислил объемы тел вращения параболы и окружности вокруг прямой, что, как знает любой изучающий математику, есть одно из первых домашних заданий при изучении курса дифференциального и интегрального исчисления. Однако аксиома Архимеда отвергала ноль, который является мостом между областями конечных и бесконечных величин, мостом, абсолютно необходимым для дифференциального и интегрального исчисления и высшей математики.

      Даже блестящий мыслитель Архимед иногда вместе со своими современниками пренебрегал нолем. Он верил в аристотелевскую вселенную, заключенную в гигантскую сферу. В шутку он решил вычислить, сколько песчинок заполнило бы (сферическую) Вселенную. В своем труде «Псаммит» («Исчисление песчинок») Архимед впервые подсчитал, сколько песчинок уляжется на семечке ромашки, сколько семечек ромашки уляжется на пальце… Перейдя от ширины пальца к стадию (стандартной греческой единице измерения расстояний), а затем к величине Вселенной, Архимед нашел, что Вселенную, заключенную во внешнюю сферу неподвижных звезд, заполнят 1051 песчинок. (1051 – это действительно очень, очень большое число. Если, например, взять 1051 молекул воды, то при условии, что каждый человек – мужчина, женщина и ребенок – будет выпивать по тонне воды в секунду, потребуется более 150 тысяч лет, чтобы такое количество воды было выпито.) Это число было настолько велико, что греческая система нумерации не могла с ним справиться. Архимеду пришлось изобрести новый способ записывать действительно огромные числа.

      В греческой системе самым большим числом была мириада, и пересчитывая мириады, греки могли дойти до мириады мириад (100 000 000) и немного больше. Однако Архимед пошел дальше, «нажав кнопку перезагрузки». Он просто начал с мириады мириад, выбрав 100 000 000 в качестве единицы, и начал отсчет заново, назвав эти новые числа «числами второго порядка». (Архимед не считал 100 000 001 равным единице, а 100 000 000 – равным нолю, как поступил бы современный математик. Архимеду не приходило в голову, что начало с ноля было бы более осмысленным.) Числа второго порядка шли от мириады мириад до мириады мириад мириад мириад мириад мириад (1 000 000 000 000 000 000 000 000). Так продолжалось, пока Архимед не добрался до мириады в степени мириады, что он назвал числами первого периода. Это был очень громоздкий способ справиться с проблемой, однако так достигалось решение и даже давало гораздо большие возможности, чем Архимеду требовалось для его мысленного эксперимента.

      Однако как бы ни велики были придуманные Архимедом числа, они были конечными – и их было достаточно, чтобы переполнить Вселенную песком. Бесконечность не была нужна в греческой Вселенной. Возможно, имея больше времени, Архимед начал бы видеть соблазн бесконечного и ноля. Однако ученый встретил свою судьбу, когда пересчитывал песчинки. Римляне были слишком сильны для Сиракуз. Воспользовавшись

Скачать книгу