ТОП просматриваемых книг сайта:
Elements of the Theory and Practice of Chymistry, 5th ed. Pierre Joseph Macquer
Читать онлайн.Название Elements of the Theory and Practice of Chymistry, 5th ed
Год выпуска 0
isbn 4057664591579
Автор произведения Pierre Joseph Macquer
Жанр Языкознание
Издательство Bookwire
Green Vitriol dissolved in water spontaneously lets fall a yellowish earthy sediment. If this solution be defecated by filtration, it still continues to deposite some of the same substance, till the vitriol be wholly decomposed. This sediment is nothing but the earth of Iron, which is then called Ochre.
The nitrous acid dissolves Iron with great ease. This solution is of a yellow colour, inclining more or less to a russet, or dark-brown, as it is more or less saturated with Iron. Iron dissolved by this acid, also, falls spontaneously in a kind of calx, which is incapable of being dissolved a second time; for the nitrous acid will not act upon Iron that has lost its phlogiston. This solution does not crystallize, and if evaporated to dryness attracts the moisture of the air.
Spirit of salt likewise dissolves Iron, and this solution is green. The vapours which rise during the dissolution are inflammable, like those which ascend when this metal is attacked by the vitriolic acid. Aqua regis makes a solution of Iron, which is of a yellow colour.
Iron hath a greater affinity than either Silver or Copper with the nitrous and vitriolic acids: so that if iron be presented to a solution of either in one of these two acids, the dissolved metal will be precipitated; because the acid quits it for the Iron, with which it has a greater affinity.
On this occasion it must be observed, that if a solution of Copper in the vitriolic acid be precipitated by means of Iron, the precipitate has the form and splendour of a metal, and does not require the addition of a phlogiston to reduce it to true Copper; which is not the case, as has been shewn, when the precipitation is effected by earths or alkaline salts.
The colour of this metalline precipitate hath deceived several persons, who being unacquainted with such phenomena, and with the nature of blue vitriol, imagined that Iron was transmuted into Copper, when they saw a bit of Iron laid in a solution of that vitriol become, in form and external appearance, exactly like Copper: whereas the surface only of the Iron was crusted over with the particles of Copper contained in the vitriol, which had gradually fallen upon and adhered to the Iron, as they were precipitated out of the solution.
Among the solvents of Iron we mentioned fixed alkalis; and that they have such a power is proved by the following phenomenon. If a large proportion of alkaline salts be suddenly mixed with a solution of Iron in an acid, no precipitation ensues, and the liquor remains clear and pellucid; or if at first it look a little turbid, that appearance lasts but a moment, and the liquor presently recovers its transparency. The reason is, that the quantity of alkali is more than sufficient to saturate all the acid of the solution, and the superabundant portion thereof, meeting with the Iron already finely divided by the acid, dissolves it with ease as fast as it falls, and so prevents its muddying the liquor. To evince that this is so in fact, let the alkali be applied in a quantity that is not sufficient, or but barely sufficient, to saturate the acid, and the Iron will then precipitate like any other metal.
Water also acts upon Iron; and therefore Iron exposed to moisture grows rusty. If iron-filings be exposed to the dew, they turn wholly to a rust, which is called Crocus Martis Aperiens.
Iron exposed to the fire together with nitre makes it detonate pretty briskly, sets it in a flame, and decomposes it with rapidity.
This metal hath a greater affinity than any other metalline substance with sulphur; on which account it is successfully used to precipitate and separate all metalline substances combined with sulphur.
Sulphur uniting with Iron communicates to it such a degree of fusibility, that if a mass of this metal heated red-hot be rubbed with a bit of sulphur, it incessantly runs into as perfect a fusion as a metal exposed to the focus of a large burning-glass.
SECTION V.
Of Tin.
Tin is the lightest of all metals. Though it yields easily to the impression of hard bodies, it has but little ductility. Being bent backwards and forwards it makes a small crackling noise. It flows with a very moderate degree of fire, and long before it comes to be red-hot. When it is in fusion, its surface soon grows dusty, and there forms upon it a thin dark-coloured dusty pellicle, which is no other than a part of the Tin that has lost its phlogiston, or a calx of Tin. The metal thus calcined easily recovers its metalline form on the addition of a phlogiston. If the calx of Tin be urged by a strong fire it grows white, but the greatest violence of heat will not fuse it; which makes some Chymists consider it as a calcinable or absorbent earth, rather than a vitrifiable one. Yet it turns to glass, in some sort, when mixed with any other substance that vitrifies easily. However, it always produces an imperfect glass only, which is not at all transparent, but of an opaque white. The calx of Tin thus vitrified is called Enamel. Enamels are made of several colours by the addition of this or that metalline calx.
Tin unites easily with all the metals; but it destroys the ductility and malleability of every one of them, Lead excepted. Nay, it possesses this property of making metals brittle in such an eminent degree, that the very vapour of it, when in fusion, is capable of producing this effect. Moreover, which is very singular, the most ductile metals, even Gold and Silver, are those on which it works this change with the most ease, and in the greatest degree. It has also the property of making Silver mixed with it flow over a very small fire.
It adheres to, and in some measure incorporates with, the surface of Copper and of Iron; whence arose the practice of coating over those metals with Tin. Tin plates are no other than thin plates of Iron tinned over.
If to twenty parts of Tin one part of Copper be added, this alloy renders it much more solid, and the mixed mass continues tolerably ductile.
If, on the contrary, to one part of Tin ten parts of Copper be added, together with a little Zink, a semi-metal to be considered hereafter, from this combination there results a metalline compound which is hard, brittle, and very sonorous; so that it is used for casting bells: this composition is called Bronze and Bell-metal.
Tin hath an affinity with the vitriolic, nitrous, and marine acids. All of them attack and corrode it; yet none of them is able to dissolve it without great difficulty: so that if a clear solution thereof be desired, particular methods must be employed for that purpose; for the acids do but in a manner calcine it, and convert it to a kind of white calx or precipitate. The solvent which has the greatest power over it is aqua regis, which has even a greater affinity therewith than with Gold itself; whence it follows, that Gold dissolved in aqua regis may be precipitated by means of Tin; but then the aqua regis must be weakened. Gold thus precipitated by Tin is of a most beautiful colour, and is used for a red in enameling and painting on porcelain, as also to give a red colour to artificial gems. If the aqua regis be not lowered, the precipitate will not have the purple colour.
Tin hath the property of giving a great lustre to all red colours in general; on which account it is used by the dyers for striking a beautiful scarlet, and tin vessels are employed in making fine syrup of violets. Water does not act upon this metal, as it does upon Iron and Copper; for which reason it is not subject to rust: nevertheless, when it is exposed to the air, its surface soon loses its polish and splendour.
Tin mixed with nitre and exposed to the fire deflagrates with it, makes it detonate, and is immediately converted to a refractory calx: for so all substances are called which are incapable of fusion.
Tin readily unites with sulphur, and with it becomes a brittle and friable mass.
SECTION VI.
Of Lead.
Next to Gold and Mercury Lead is the heaviest of all metalline substances, but in hardness is exceeded by every one of them. Of all metals also it melts the easiest except Tin. While it is in fusion there gathers incessantly on its surface,