Скачать книгу

auf die Sache auch ganz am Platze; nur sollte man sie von einer Definition immer deutlich unterscheiden. Dass auch Mathematiker Beweisgründe mit innern oder äussern Bedingungen der Führung eines Beweises verwechseln können, dafür liefert E. Schröder4 ein ergötzliches Beispiel, indem er unter der Ueberschrift: »Einziges Axiom« Folgendes darbietet: »Das gedachte Princip könnte wohl das Axiom der Inhärenz der Zeichen genannt werden. Es giebt uns die Gewissheit, dass bei allen unsern Entwicklungen und Schlussfolgerungen die Zeichen in unserer Erinnerung – noch fester aber am Papiere – haften« u. s. w.

      So sehr sich nun die Mathematik jede Beihilfe vonseiten der Psychologie verbitten muss, so wenig kann sie ihren engen Zusammenhang mit der Logik verleugnen. Ja, ich stimme der Ansicht derjenigen bei, die eine scharfe Trennung für unthunlich halten. Soviel wird man zugeben, dass jede Untersuchung über die Bündigkeit einer Beweisführung oder die Berechtigung einer Definition logisch sein muss. Solche Fragen sind aber gar nicht von der Mathematik abzuweisen, da nur durch ihre Beantwortung die nöthige Sicherheit erreichbar ist.

      Auch in dieser Richtung gehe ich freilich etwas über das Uebliche hinaus. Die meisten Mathematiker sind bei Untersuchungen ähnlicher Art zufrieden, dem unmittelbaren Bedürfnisse genügt zu haben. Wenn sich eine Definition willig zu den Beweisen hergiebt, wenn man nirgends auf Widersprüche stösst, wenn sich Zusammenhänge zwischen scheinbar entlegnen Sachen erkennen lassen und wenn sich dadurch eine höhere Ordnung und Gesetzmässigkeit ergiebt, so pflegt man die Definition für genügend gesichert zu halten und fragt wenig nach ihrer logischen Rechtfertigung. Dies Verfahren hat jedenfalls das Gute, dass man nicht leicht das Ziel gänzlich verfehlt. Auch ich meine, dass die Definitionen sich durch ihre Fruchtbarkeit bewähren müssen, durch die Möglichkeit, Beweise mit ihnen zu führen. Aber es ist wohl zu beachten, dass die Strenge der Beweisführung ein Schein bleibt, mag auch die Schlusskette lückenlos sein, wenn die Definitionen nur nachträglich dadurch gerechtfertigt werden, dass man auf keinen Widerspruch gestossen ist. So hat man im Grunde immer nur eine erfahrungsmässige Sicherheit erlangt und muss eigentlich darauf gefasst sein, zuletzt doch noch einen Widerspruch anzutreffen, der das ganze Gebäude zum Einsturze bringt. Darum glaubte ich etwas weiter auf die allgemeinen logischen Grundlagen zurückgehn zu müssen, als vielleicht von den meisten Mathematikern für nöthig gehalten wird.

      Als Grundsätze habe ich in dieser Untersuchung folgende festgehalten:

      es ist das Psychologische von dem Logischen, das Subjective von dem Objectiven scharf zu trennen;

      nach der Bedeutung der Wörter muss im Satzzusammenhange, nicht in ihrer Vereinzelung gefragt werden;

      der Unterschied zwischen Begriff und Gegenstand ist im Auge zu behalten.

      Um das Erste zu befolgen, habe ich das Wort »Vorstellung« immer im psychologischen Sinne gebraucht und die Vorstellungen von den Begriffen und Gegenständen unterschieden. Wenn man den zweiten Grundsatz unbeachtet lässt, ist man fast genöthigt, als Bedeutung der Wörter innere Bilder oder Thaten der einzelnen Seele zu nehmen und damit auch gegen den ersten zu verstossen. Was den dritten Punkt betrifft, so ist es nur Schein, wenn man meint, einen Begriff zum Gegenstande machen zu können, ohne ihn zu verändern. Von hieraus ergiebt sich die Unhaltbarkeit einer verbreiteten formalen Theorie der Brüche, negativen Zahlen u. s. w. Wie ich die Verbesserung denke, kann ich in dieser Schrift nur andeuten. Es wird in allen diesen Fällen wie bei den positiven ganzen Zahlen darauf ankommen, den Sinn einer Gleichung festzustellen.

      Meine Ergebnisse werden, denke ich, wenigstens in der Hauptsache die Zustimmung der Mathematiker finden, welche sich die Mühe nehmen, meine Gründe in Betracht zu ziehn. Sie scheinen mir in der Luft zu liegen und einzeln sind sie vielleicht schon alle wenigstens annähernd ausgesprochen worden; aber in diesem Zusammenhange mit einander möchten sie doch neu sein. Ich habe mich manchmal gewundert, dass Darstellungen, die in Einem Punkte meiner Auffassung so nahe kommen, in andern so stark abweichen.

      Die Aufnahme bei den Philosophen wird je nach dem Standpunkte verschieden sein, am schlechtesten wohl bei jenen Empirikern, die als ursprüngliche Schlussweise nur die Induction anerkennen wollen und auch diese nicht einmal als Schlussweise, sondern als Gewöhnung. Vielleicht unterzieht Einer oder der Andere bei dieser Gelegenheit die Grundlagen seiner Erkenntnisstheorie einer erneueten Prüfung. Denen, welche etwa meine Definitionen für unnatürlich erklären möchten, gebe ich zu bedenken, dass die Frage hier nicht ist, ob natürlich, sondern ob den Kern der Sache treffend und logisch einwurfsfrei.

      Ich gebe mich der Hoffnung hin, dass bei vorurtheilsloser Prüfung auch die Philosophen einiges Brauchbare in dieser Schrift finden werden.

      § 1. Nachdem die Mathematik sich eine Zeit lang von der euklidischen Strenge entfernt hatte, kehrt sie jetzt zu ihr zurück und strebt gar über sie hinaus. In der Arithmetik war schon infolge des indischen Ursprungs vieler ihrer Verfahrungsweisen und Begriffe eine laxere Denkweise hergebracht als in der von den Griechen vornehmlich ausgebildeten Geometrie. Sie wurde durch die Erfindung der höhern Analysis nur gefördert; denn einerseits stellten sich einer strengen Behandlung dieser Lehren erhebliche, fast unbesiegliche Schwierigkeiten entgegen, deren Ueberwindung andrerseits die darauf verwendeten Anstrengungen wenig lohnen zu wollen schien. Doch hat die weitere Entwickelung immer deutlicher gelehrt, dass in der Mathematik eine blos moralische Ueberzeugung, gestützt auf viele erfolgreiche Anwendungen, nicht genügt. Für Vieles wird jetzt ein Beweis gefordert, was früher für selbstverständlich galt. Die Grenzen der Giltigkeit sind erst dadurch in manchen Fällen festgestellt worden. Die Begriffe der Function, der Stetigkeit, der Grenze, des Unendlichen haben sich einer schärferen Bestimmung bedürftig gezeigt. Das Negative und die Irrationalzahl, welche längst in die Wissenschaft aufgenommen waren, haben sich einer genaueren Prüfung ihrer Berechtigung unterwerfen müssen.

      So zeigt sich überall das Bestreben, streng zu beweisen, die Giltigkeitsgrenzen genau zu ziehen und, um dies zu können, die Begriffe scharf zu fassen.

      § 2. Dieser Weg muss im weitern Verfolge auf den Begriff der Anzahl und auf die von positiven ganzen Zahlen geltenden einfachsten Sätze führen, welche die Grundlage der ganzen Arithmetik bilden. Freilich sind Zahlformeln wie 5 + 7 = 12 und Gesetze wie das der Associativität bei der Addition durch die unzähligen Anwendungen, die tagtäglich von ihnen gemacht werden, so vielfach bestätigt, dass es fast lächerlich erscheinen kann, sie durch das Verlangen nach einem Beweise in Zweifel ziehen zu wollen. Aber es liegt im Wesen der Mathematik begründet, dass sie überall, wo ein Beweis möglich ist, ihn der Bewährung durch Induction vorzieht. Euklid beweist Vieles, was ihm jeder ohnehin zugestehen würde. Indem man sich selbst an der euklidischen Strenge nicht genügen liess, ist man auf die Untersuchungen geführt worden, welche sich an das Parallelenaxiom geknüpft haben.

      So ist jene auf grösste Strenge gerichtete Bewegung schon vielfach über das zunächst gefühlte Bedürfniss hinausgegangen und dieses ist an Ausdehnung und Stärke immer gewachsen.

      Der Beweis hat eben nicht nur den Zweck, die Wahrheit eines Satzes über jeden Zweifel zu erheben, sondern auch den, eine Einsicht in die Abhängigkeit der Wahrheiten von einander zu gewähren. Nachdem man sich von der Unerschütterlichkeit eines Felsblockes durch vergebliche Versuche, ihn zu bewegen, überzeugt hat, kann man ferner fragen, was ihn denn so sicher unterstütze. Je weiter man diese Untersuchungen fortsetzt, auf desto weniger Urwahrheiten führt man Alles zurück; und diese Vereinfachung ist an sich schon ein erstrebenswerthes Ziel. Vielleicht bestätigt sich auch die Hoffnung, dass man allgemeine Weisen der Begriffsbildung oder der Begründung gewinnen könne, die auch in verwickelteren Fällen verwendbar sind, indem man zum Bewusstsein bringt, was die Menschen in den einfachsten Fällen instinctiv gethan haben, und das Allgemeingiltige daraus abscheidet.

      § 3. Mich haben auch philosophische Beweggründe zu solchen Untersuchungen bestimmt. Die Fragen nach der apriorischen oder aposteriorischen, der synthetischen oder analytischen Natur der arithmetischen Wahrheiten harren hier ihrer Beantwortung. Denn, wenn auch diese Begriffe selbst der Philosophie angehören, so glaube ich doch, dass die Entscheidung nicht ohne Beihilfe der Mathematik erfolgen kann. Freilich hangt dies von dem Sinne ab, den man jenen Fragen beilegt.

      Es ist kein seltener Fall, dass man zuerst den Inhalt eines Satzes gewinnt

Скачать книгу