ТОП просматриваемых книг сайта:
Magnetic Resonance Microscopy. Группа авторов
Читать онлайн.Название Magnetic Resonance Microscopy
Год выпуска 0
isbn 9783527827251
Автор произведения Группа авторов
Жанр Химия
Издательство John Wiley & Sons Limited
96 96 Wald, L.L. (2019). Ultimate MRI. Journal of Magnetic Resonance 306: 139–144.
97 97 Lvovsky, Y., Stautner, E.W., and Zhang, T. (2013). Novel technologies and configurations of superconducting magnets for MRI. Superconductor Science and Technology 26: 093001).
98 98 Iwasa, Y. (2017). Toward liquid-helium-free, persistent-mode MgB2 MRI magnets: FBML experience. Superconducting Science and Technology 30 (5): 053001.
99 99 Baig, T., Al Amin, A., Deissler, R.J.et al. (2017). Conceptual designs of conduction cooled MgB2 magnets for 1.5 and 3.0T full body MRI systems. Superconductor Science and Technology 30 (4): 043002.
100 100 Lugabsky, L.B. (1987). Optimal coils for producing uniform magnetic fields. Journal of Physics E 20 (3): 277–285.
101 101 Xu, H., Conolly, S., Scott, G.et al. (2000). Homogeneous magnet design using linear programming. IEEE Transactions on Magnetics 36 (2): 476–483.
102 102 Xu, H., Conolly, S.M., Scott, G.C.et al. (1999). Fundamental scaling relations for homogeneous magnets. Proceedings of the ISMRM 475.
103 103 Zhang, B., Gazdzinski, C., Chronik, B.et al. (2005). Simple design guidelines for short MRI systems. Magnetic Resonance Part B (Magnetic Resonance Engineering) 25B (1): 53–59.
104 104 Lucas, J., Lucas, P., and LeMercier, T. (2014). Rare Earths: Science, Technology, Production and Use, 1e, 224–225. Elsevier
105 105 Sagawa, M., Fujimura, H., Yamamoto, Y.et al. (1984). Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Transactions on Magnetics 20 (5): 1584–1589.
106 106 Kazemivalipour, E., Bhusal, B., Vu, J.et al. (2021). Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems. Magnetic Resonance in Medicine 86 (3): 1560–1572.
107 107 Halbach, K. (1979). Strong rare earth cobalt quadrupoles. IEEE Transactions on Nuclear Science 26 (3): 3882–3884.
108 108 Halbach, K. (1980). Design of permanent multipole magnets with oriented rare earth cobalt material. Journal of Nuclear Instruments & Methods 69: 1–10.
109 109 Shute, H.A., Mallison, J.C., Wilton, D.T.et al. (2000). One-sided fluxes in planar, cylindrical, and spherical magnetized structures. IEEE Transactions on Magnetics 36 (2): 440–451.
110 110 Raich, H.and Blumler, P. (2004). Design and construction of a dipolar Halbach array with a homogeneous field from identical bar magnets: NMR mandhalas. Concepts in Magnetic Resonance 23B (1): 16–25.
111 111 Cooley, C.Z., Haskell, M.W., Cauley, S.F.et al. (2018). Design of sparse Halbach magnet arrays for portable MRI using a genetic algorithm. IEEE Transactions on Magnetics 54 (1): 1–12.
112 112 Purchase, A.R., Vidarsson, L., Wachowicz, K.et al. (2021). A short and light, sparse dipolar Halbach magnet for MRI. IEEE Access 9: 95294–95303.
113 113 Choi, J.S.and Yoo, J. (2008). Design of a Halbach magnet array based on optimization techniques. IEEE Transactions on Magnetics 44 (10): 2361–2366.
114 114 Tewari, S., O’Reilly, T., and Webb, A. (2021). Improving the field homogeneity of fixed- and variable-diameter discrete Halbach magnet arrays for MRI via optimization of the angular magnetization distribution. Journal of Magnetic Resonance 324: 106923.
115 115 O’Reilly, T., Teeuwisse, W.M., De Gans, D.et al. (2021). In vivo 3D brain and extremity MRI at 50 mT using a permanent magnet Halbach array. Magnetic Resonance in Medicine 85 (1): 495–505.
116 116 Cooley, C.Z., Stockmann, J.P., and Wald, L.L. (2021). A portable brain MRI scanner based on a 72 mT, 35 kg “Halbach-bulb” magnet and external gradient coil. Proceedings of the ISMRM, virtual.
117 117 Manz, B., Benecke, M., and Volke, F. (2008). A simple, small and low cost permanent magnet design to produce homogeneous magnetic fields. Journal of Magnetic Resonance 192 (1): 131–138.
118 118 McGinley, J.V., Ristic, M., and Young, I.R. (2016). A permanent MRI magnet for magic angle imaging having its field parallel to the poles. Journal of Magnetic Resonance 271: 60–67.
119 119 Hugon, C., D’Amico, F., Aubert, G.et al. (2010). Design of arbitrarily homogeneous permanent magnet systems for NMR and MRI: Theory and experimental developments of a simple portable magnet. Journal of Magnetic Resonance 205 (1): 75–85.
120 120 Aubert, G. (1991). Cylindrical permanent magnet with longitudinal induced field. USA patent 5014032.
121 121 Ren, Z.H., Mu, W.C., and Huang, S.Y. (2019). Design and optimization of a ring-pair permanent magnet array for head imaging in a low-field portable MRI system. IEEE Transactions on Magnetics 55 (1): 1–8.
122 122 Ren, Z.H., Gong, S., and Huang, S.Y. (2019). An irregular-shaped inward-outward ring-pair magnet array with a monotonic field gradient for 2D head imaging in low-field portable MRI. IEEE Access 7: 48715–4872.
123 123 Kuang, I., Arango, N., Stockmann, J.P.et al. (2019). Equivalent-charge-based optimization of spokes and hub magnets for hand-held and classroom MR imaging. Proceedings of the ISMRM, Montreal, Canada.
124 124 Mullen, M.and Garwood, M. (2020). Contemporary approaches to high-field magnetic resonance imaging with large field inhomogeneity. Progress in Nuclear Magnetic Resonance Spectroscopy 120–121: 95–108.
125 125 Lange, K.and Carson, R. (1984). EM reconstruction algorithms for emission and transmission tomography. Journal of Computer Assisted Tomography 8 (2): 306–316.
126 126 Harshbarger, T.B.and Twieg, D.B. (1999). Iterative reconstruction of single-shot spiral MRI with off resonance. IEEE Transactions on Medical Imaging 18 (3): 196–205.
127 127 Fessler, J. (2010). Model-based image reconstruction for MRI. IEE Signal Processing Magazine 27 (4): 81–89.
128 Скачать книгу