ТОП просматриваемых книг сайта:
Magnetic Resonance Microscopy. Группа авторов
Читать онлайн.Название Magnetic Resonance Microscopy
Год выпуска 0
isbn 9783527827251
Автор произведения Группа авторов
Жанр Химия
Издательство John Wiley & Sons Limited
63 63 Wintermark, M., Sanelli, P.C., Albers, G.W.et al. (2013). Imaging recommendations for acute stroke and transient ischemic attack patients: A joint statement by the American Society of Neuroradiology, the American College of Radiology and the Society of NeuroInterventional Surgery. Journal of the American College of Radiology 10 (11): 828–832.
64 64 Li, L., Padhi, A., Ranjeva, S.L.et al. (2011). Association of bacteria with hydrocephalus in Ugandan infants. Journal of Neurosurgery: Pediatrics 7 (1): 73–87.
65 65 Warf, B.C., Alkire, B.C., Bhai, S.et al. (2011). Costs and benefits of neurosurgical intervention for infant hydrocephalus in sub-Saharan Africa. Journal of Neurosurgery: Pediatrics 8 (5): 509–521.
66 66 Kulkarni, A.V., Schiff, S.J., Mbabazi-Kabachelor, E.et al. (2017). Endoscopic treatment versus shunting for infant hydrocephalus in Uganda. The New England Journal of Medicine 377 (25): 2456–2464.
67 67 Obungoloch, J., Harper, J.R., Consevage, S.et al. (2018). Design of a sustainable prepolarizing magnetic resonance imaging system for infant hydrocephalus. MAGMA 31 (5): 665–676.
68 68 O’Reilly, T., Teeuwisse, W.M., and Webb, A.G. (2019). Three-dimensional MRI in a homogenous 27cm diameter bore Halbach array magnet. Journal of Magnetic Resonance 307: 106578.
69 69 Diehl, J., Van Doesum, F., Bakker, M.et al. (2020). The embodiment of low-field MRI for the diagnosis of infant hydrocephalus in Uganda. IEEE Global Humanitarian Technology Conference (GHTC), virtual.
70 70 O’Reilly, T., Wouter, T., Winter, L.et al. (2019). Design of a homogeneous large-bore Halbach array for low field MRI. Proceedings of the ISMRM, Montreal, Canada.
71 71 Blumich, B., Blumler, P., Eidmann, G.et al. (1998). The NMR-mouse: Construction, excitation, and applications. Magnetic Resonance Imaging 16 (5–6): 479–484.
72 72 Perlo, J., Casanova, F., and Blumich, B. (2005). Profiles with microscopic resolution by single-sided NMR. Journal of Magnetic Resonance 176 (1): 64–70.
73 73 Hurlimann, M.D.and Heaton, N.J. (2016). NMR well logging. In: Mobile NMR and MRI: Developments and Applications (eds. M. Johns, E.O. Findjonson, S. Vogt, and A. Haber), 11–79. Cambridge, UK: Royal Society of Chemistry.
74 74 Douglas-Escobar, M.and Weiss, M.D. (2015). Hypoxic-ischemic encephalopathy: A review for the clinician. JAMA Pediatrics 169 (4): 397–403.
75 75 Finer, N.N., Robertson, C.M., Richards, R.T.et al. (1981). Hypoxic-ischemic encephalopathy in term neonates: Perinatal factors and outcome. Journal of Pediatrics 98 (1): 112–117.
76 76 Oorschot, D.E., Sizemore, R.J., and Amer, A.R. (2020). Treatment of neonatal hypoxic-ischemic encephalopathy with erythropoietin alone, and erythropoietin combined with hypothermia: history, current status, and future research. International Journal of Molecular Sciences 21 (4): 1487.
77 77 Gluckman, P.D., Wyatt, J.S., Azzopardi, D.et al. (2005). Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: Multicentre randomised trial. Lancet 365 (9460): 663–670.
78 78 Bano, S., Chaudhary, V., and Garga, U.C. (2017). Neonatal hypoxic-ischemic encephalopathy: A radiological review. Journal of Pediatric Neurosciences 12 (1): 1–6.
79 79 Arthurs, O.J., Edwards, A., Austin, T.et al. (2012). The challenges of neonatal magnetic resonance imaging. Pediatric Radiology 42 (10): 1183–1194.
80 80 Hinshaw, W.S., Andrew, E.R., Bottomley, P.A.et al. (1978). Internal structural mapping by nuclear magnetic resonance. Neuroradiology 16: 607–609.
81 81 Hinshaw, W.S., Bottomley, P.A., and Holland, G.N. (1977). Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature 270 (5639): 722–723.
82 82 Edelman, R.R. (2014). The history of MR imaging as seen through the pages of radiology. Radiology 273 (2 Suppl.): S181–S200.
83 83 Feinberg, D.A., Mills, C.M., Posin, J.P.et al. (1985). Multiple spin-echo magnetic resonance imaging. Radiology 155 (2): 437–442.
84 84 Sarracanie, M.and Salameh, N. (2020). Low-field MRI: How low can we go? A fresh view on an old debate. Frontiers in Physics 8: 172.
85 85 Kraus, R.H., Espy, M.A., Magnelind, P.E.et al. (2014). Ultra-Low Field Nuclear Magnetic Resonance, a New MRI Regime. Oxford, UK: Oxford University Press.
86 86 Macovski, A.and Conolly, S. (1993). Novel approaches to low-cost MRI. Magnetic Resonance in Medicine 30 (2): 221–230.
87 87 Clarke, J.C., Hatridge, M., and Mossle, M. (2007). SQUID-detected magnetic resonance imaging in microtesla fields. Annual Review of Biomedical Engineering 9: 389–413.
88 88 Inglis, B., Buckenmaier, K., Sangiorgio, P.et al. (2013). MRI of the human brain at 130 microtesla. Proceedings of the National Academy of Sciences of the United States of America 110 (48): 19194–19201.
89 89 Lin, F.H., Vesanen, P.T., Nieminen, J.O.et al. (2013). Noise amplification in parallel whole-head ultra-low-field magnetic resonance imaging using 306 detectors. Magnetic Resonance in Medicine 70 (2): 595–600.
90 90 Savukov, I.M., Zotev, V.S., Volegov, P.L.et al. (2009). MRI with an atomic magnetometer suitable for practical imaging applications. Journal of Magnetic Resonance 199 (2): 188–191.
91 91 Tsai, L.L., Mair, R.W., Rosen, M.S.et al. (2008). An open-access, very-low-field MRI system for posture-dependent 3He human lung imaging. Journal of Magnetic Resonance 193 (2): 274–285.
92 92 Sarracanie, M., LaPierre, C.D., Salameh, N.et al. (2015). Low-cost high-performance MRI. Scientific Reports 5: 15177.
93 93 Volegov, P.L., Mosher, J.C., Espy, M.A.et al. (2005). On concomitant gradients in low-field MRI. Journal of Magnetic Resonance 175 (1): 103–113.
94 94 Nieminen, J.O.and Ilmoniemi, R.J. (2010). Solving the problem of concomitant gradients in ultra-low-field MRI. Journal of Magnetic Resonance 207 (2): 213–219.