Скачать книгу

mechanisms between microorganisms and minerals. Nature Reviews Microbiology14 (10): 651–662. doi:10.1038/nrmicro.2016.93

      132 Sinkko, H., Lukkari, K., Jama, A.S. et al. (2011). Phosphorus chemistry and bacterial community composition interact in brackish sediments receiving agricultural discharges. PLoS One 6 (6): e21555. https://doi.org/10.1371/journal.pone.0021555

      133 Sivan, O., Shusta, S.S., Valentine, D.L. (2016). Methanogens rapidly transition from methane production to iron reduction. Geobiology 14 (2): 190–203. https://doi.org/10.1111/gbi.12172

      134 Sleep, N.H. (2018). Geological and geochemical constraints on the origin and evolution of life. Astrobiology 18 (9): 1199–1219. https://doi.org/10.1089/ast.2017.1778

      135 Slobodkina, G.B., Kolganova, T.V., Chernyh, N.A. et al. (2009). Deferribacter autotrophicus sp. nov., an iron (III)‐reducing bacterium from a deep‐sea hydrothermal vent. International Journal of Systematic and Evolutionary Microbiology 59 (6): 1508–1512. https://doi.org/10.1099/ijs.0.006767–0

      136 Smith, H., Abuyen, K., Tremblay, J. et al. (2018). Genome sequence of Geothermobacter sp. strain HR‐1, an iron reducer from the Lō ‘ihi Seamount Hawai’i. Genome Announcements 6 (21): e00339–18. doi:10.1128/genomeA.00339–18

      137 Stapleton, R., Sabree, Z., Palumbo, A.V. et al. (2005). Metal reduction at cold temperatures by Shewanella isolates from various marine environments. Aquatic Microbial Ecology 38 (1): 81–91. doi:10.3354/ame038081

      138 Subramanian, P., Pirbadian, S., El‐Naggar, M.Y.et al. (2018). Ultrastructure of Shewanella oneidensis MR‐1 nanowires revealed by electron cyrotomography. Proceedings of the National Academy of Sciences 115 (14): E3246–E3255. https://doi:10.1073/pnas.1718810115

      139 Tebo, B.M. and Obraztsova, A.Y. (1998). Sulfate‐reducing bacterium grows with Cr(VI), U(VI), Mn(IV) and Fe(III) as electron acceptors. FEMS Microbiology Letters 162 (1): 193–199. https://doi.org/10.1111/j.1574–6968.1998.tb12998.x

      140 Timmers, P.H.A., Welte, C.U., Koehorst, J.J. et al. (2017). Reverse methanogenesis and respiration in methanotropic archaea. Archaea, 17: 1–22. https://doi.org/10.1155/2017/1654237

      141 Thang, N.M., Brüchert, V., Formolo, M. et al.(2013). The impact of sediment and carbon fluxes on the biogeochemistry of methane and sulfur in littoral Baltic Sea sediments (Himmerfjärden, Sweden). Estuar. Coast, 36 (1): 98–115. https://doi.org/10.1007/s12237–012–9557–0

      142 Toulza, E., Tagliabue, A., Blain, S. et al. (2012). Analysis of the global ocean sampling (GOS) project trends in iron uptake by surface ocean microbes. PLoS One, 7(2): e30931. https://doi.org/10.1371/journal.pone.0030931

      143 Tully, B., Savalia, P., Abuyen, K. et al. (2017). Genome sequence of Geothermobacter sp. strain EPR‐M, a deep‐sea hydrothermal vent iron reducer. Genome Announcements 5 (23): e00424–17. doi:10.1128/genomeA.00424–17

      144 Turick, C.E., Louis, S.T. and Caccavo Jr, F. (2002). Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Applied and Environmental Microbiology 68 (5): 2436–2444. doi:10.1128/AEM.68.5.2436–2444.2002

      145 Vargas, M., Kashefi, K., Blunt‐Harris, E.L. et al. (1998). Microbiological evidence for Fe(III) reduction on early Earth. Nature 395 (6697): 65.

      146 Vargas, M., Malvankar, N.S., Tremblay, P.L. et al. (2013). Aromatic amino acids requires for pili conductivity and long‐range extracellular electron transport in Geobacter sulfurreducens. mBio 4(2): e00105–13. doi:10.1128/mBio.00105–13

      147 Venkateswaran, K., Dollhopf, M.E., Aller, R. et al. (1998). Shewanella amazonensis sp. nov., a novel metal‐reducing facultative anaerobe from Amazonian shelf muds. International Journal of Systematic and Evolutionary Microbiology 48 (3): 965–972. https://doi.org/10.1099/00207713–48–3‐965

      148 von Canstein, H., Ogawa, J., Shimizu, S. et al. (2008). Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Applied and Environmental Microbiology 74 (3): 615–623. doi:10.1128/AEM.01387–07

      149 Walker, D.J.F., Martz, E., Holmes, D.E. et al. (2019). The archaellum of Methanospirillum hungatei is electrically conductive. mBio 10 (2): e00579–19. doi:10.1128/mBio.00579–19.

      150 Wang, F., Wang, J., Jian, H. et al. (2008). Environmental adaptation: genomic analysis of the piezotolerant and psychrotolerant deep‐sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS One 3 (4): e1937. https://doi.org/10.1371/journal.pone.0001937

      151 Wang, G., Qian, F., Saltikov, C.W. et al. (2011). Microbial reduction of graphene oxide by Shewanella. Nano Research 4(6): 563–570. https://doi.org/10.1107/s12274–011–0112–2

      152 Wankel, S.D., Adams, M.M., Johnston, D.T. et al. (2012). Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environmental Microbiology 14 (1): 2726–2740. doi:10.1111/j.1462–2920.2012.02825.x

      153 Watanabe, H.C., Yamashita, Y. and Ishikita, H. (2017). Electron transfer pathways in a multiheme cytochrome MtrF. Proceedings of the National Academy of Sciences 114 (11): 2916–2921. https://doi.org/10.1073/pnas.1617615114

      154 Waters, M.S., El‐Naggar, M.Y., Hsu, L. et al. (2009). Simultaneous interferometric measurement of corrosive or demineralizing bacteria and their mineral interfaces. Applied and Environmental Microbiology 75 (5): 1445–1449. doi:10.1128/AEM.02039–08

      155 Weber, K.A., Achenback, L.A. and Coates, J.D. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology 4 (10): 752–764. doi:10.1038/nrmicro1490

      156 Widdel, F. and Pfennig, N. (1981). Studies on dissimilatory sulfate‐reducing bacteria that decompose fatty acids. Archives of Microbiology 129 (5): 395–400. https://doi.org/10.1007/BF00406470

      157 Wortmann, U.G., Chernyavsky, B., Bernasconi, S.M. et al. (2007). Oxygen isotope biogeochemistry of pore water sulfate in the deep biosphere: dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochimica et Cosmochimica Acta 71 (17): 4221–32. https://doi.org/10.1016/j.gca.2007.06.033

      158 Yang, G., Chen, M., Zhou, S. et al. (2013). Sinorhodobacter ferrireducens gen. nov., sp. nov., a non‐phototrophic iron‐reducing bacterium closely related to phototrophic Rhodobacter species. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 104 (5): 715–724. https://doi:10.1007/s10482–013–9979–0

      159 Zacharoff, L., Chan, C.H. and Bond, D.R. (2015). Reduction of low potential electron acceptors requires the CbcL inner membrane cytochrome of Geobacter sulfurreducens. Bioelectrochemistry 107: 7–13. https://doi.org/10.1016/j.bioelechem.2015.08.003

      160 Zeng, X., Zhang, Z., Li, X. et al. (2015). Caloranaerobacter ferrireducens sp. nov., an anaerobic, thermophilic, iron(III)‐reducing bacterium isolated from deep‐sea hydrothermal sulfide deposits. International Journal of Systematic and Evolutionary Microbiology 65 (6): 1714–1718. https://doi.org/10.1099/ijs.0.000165

      161 Zhao,

Скачать книгу