Скачать книгу

https://doi.org/10.1099/ijs.0.64354–0

      43 Gorby, Y.A., Yanina, S., McLean, J.S. et al. (2006). Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR‐1 and other microorganisms. Proceedings of the National Academy of Sciences 103 (30): 11358–11363. https://doi.org/10.1073/pnas.0604517103

      44 Hamman, R. and Ottow, J.C.G. (1974). Reductive dissolution of Fe2O2 by saccharolytic Clostrida and Bacillus polymyxa under anaerobic conditions. Zeitschrift für Pflanzenernährung und Bodenkunde 137 (2): 108–115. https://doi.org/10.1002/jpln.19741370205

      45 Holmes, D.E., Bond, D.R. and Lovley, D.R. (2004a). Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Applied and Environmental Microbiology 70 (2): 1234–1237. doi:10.1128/AEM.70.2.1234–1237.2004

      46 Holmes, D.E., Nicoll, J.S., Bond, D.R. et al. (2004b). Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp., in electricity production by a marine sediment fuel cell. Applied and Environmental MicrobiologyEnvironmental Microbiology 70 (10): 6023–6030. doi:10.1128/AEM.70.10.6023–6030.2004

      47 Holmes,D.E., Dang, Y., Walker, D.J.F., Lovley, D.R. (2016). The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microbial Genomics 2(8): e000072. doi: 10.1099/mgen.0.000072

      48 Holmkvist, L., Ferdelman, T.G. and Jørgensen, B.B. (2011). A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochimica et Cosmochimica Acta 75 (12): 3581–3599. https://doi.org/10.1016/j.gca.2011.03.033

      49 Huang, J., Sun, B. and Zhang, X. (2010). Shewanella xiamenensis sp. nov., isolated from coastal sea sediments. International Journal of Systematic and Evolutionary Microbiology 60 (7): 1585–1589. https://doi.org/10.1099/ijs.0.013300–0

      50 Huber, H., Thomm, M., Konig, H. et al. (1982). Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Archives of Microbiology 132 (1): 47–50. https://doi.org/10.1007/BF00690816

      51 Ivanova, E.P., Sawabe, T., Gorschkova, N.M. et al. (2001). Shewanella japonica sp. nov. International Journal of Systematic and Evolutionary Microbiology 51 (3): 1027–1033. https://doi.org/10.1099/00207713–51–3–1027

      52 Jensen, M.M., Thamdrup, B., Rysgaard, S. et al. (2003). Rates and regulation of microbial iron reduction in sediments of the Baltic‐North transition. Biogeochemistry 65 (3): 295–317. https://doi.org/10.1023/A:1026261303494

      53 Jeong, Y.S., Song, S.K., Lee, S.J. et al. (2006). The growth and EPA synthesis of Shewanella oneidensis MR‐1 and expectation of EPA biosynthetic pathway. Biotechnology and Bioprocess Engineering 11 (2): 127–133. https://doi.org/10.1007/BF02931896

      54 Kashefi, K., Tor, J.M., Holmes, D.E. et al. (2002). Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. International Journal of Systematic and Evolutionary Microbiology 52 (3): 719–729. https://doi.org/10.1099/00207713–52–3‐719

      55 Kashefi, K., Holmes, D.E., Baross, J.A. et al. (2003). Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from “Bag City” hydrothermal vent. Applied and Environmental Microbiology 69 (5): 2985–2993. doi: 10.1128/AEM.69.5.2985–2993.2003

      56 Kim, B.H., Kim, H.J., Hyun, M.S. et al. (1999). Direct electrode reaction of Fe(III) reducing bacterium, Shewanella putrefaciens. Journal of Microbiology and Biotechnology 9: 127–31.

      57 Kim, H.J., Park, H.S., Hyun, M.S. et al. (2002). A mediator‐less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology 30 (2): 145–152. https://doi.org/10.1016/S0141–0229(01)00478–1

      58 Kim, S.J., Park, S.J., Oh, Y.S. et al. (2012). Shewanella arctica sp. nov., an iron‐reducing bacterium isolated from Arctic marine sediment. International Journal of Systematic and Evolutionary Microbiology 62 (5): 1128–33.https://doi.org/10.1099/ijs.0.031401–0

      59 Kjeldsen, K.U., Schreiber, L., Thorup, C.A. et al. (2019). On the evolution and physiology of cable bacteria. Proceedings of the National Academy of Sciences 116 (38): 19116–19125. https://doi.org/10.1073/pnas.1903514116

      60 Knoblauch, C., Sahm, K. and Jørgensen, B.B. (1999). Pschycrophilic sulfate‐reducing bacteria isolated from permanently cold Arctic marine sediments: description of Desulofrigus oceanense gen. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen. nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov. and Desulfotalea arctica sp. nov. International Journal of Systematic and Evolutionary Microbiology 49 (4): 1631–1643. doi:10.1099/00207713–49–4‐1631

      61 König, I., Haeckel, M., Drodt, M. et al. (1999). Reactive Fe(II) layers in deep‐sea sediments. Geochimica et Cosmochimica Acta 63 (10): 1517–1526. https://doi.org/10.1016/S0016–7037(99)00104–0

      62 Kraemer, S. (2004). The iron oxide dissolution and solubility in the presence of siderophores. Aquatic Science 66 (1): 3–18. https://doi.org/10.1007/s00027–003–0690–5

      63 Krumholz, L.R., Sharp, R., Fishbain, S.S. (1996). A freshwater anaerobe coupling acetate oxidation to tetrachloroethylene dehalogenation. Applied Environmental Microbiology 62 (11): 4108–4113.

      64 Kurr, M., Huber, R., König, H. et al. (1991). Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens growing at 110°C. Archives of Microbiology 156: 239–247. https://doi.org/10.1007/BF00262992

      65 Lampa‐Pastirk, S., Veazey, J.P., Walsh, K.A. et al. (2016). Thermally activated charge transport in microbial protein nanowires. Scientific Reports 6 (1): 23517. https://doi.org/10.1038/srep23517

      66 Laufer, K., Nordhoff, M., Røy, H. et al. (2016). Coexistence of microaerophilic, nitrate‐reducing and phototrophic Fe(II) oxidizers and Fe(II) reducers in coastal marine sediment. Applied and Environmental Microbiology Environmental Microbiology 82(5): 1433–1447. doi:10.1128/AEM.03527–15

      67 Lee, J.S., McBeth, J.M., Ray, R.I. et al. (2019). Iron cycling at corroding carbon steel surfaces. Biofouling 29 (10): 1243–1252. https://doi.org/10.1080/08927014.2013.836184

      68 Lemonie, F., Correia, D., Lefort, V. et al. (2019). NGPhylogeny.fr: new generation phylogenetic services for non‐specialists. Nucleic Acids Research 47. doi:10.1093/nar/gkz303

      69 Letunic, I. and Bork, P. (2016). Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research 44 (W1): W242–245. https://doi:10.1093/nar/gkw290

      70 Levar, C.E., Chan, C.H., Mehta‐Kolte, M.G. et al. (2014). An inner membrane cytochrome required only for reduction of high redox potential extracellular electron acceptors. mBio 5 (6): e02034–14. doi:10.1128/mBio.02034–14

      71 Li, J., Li, L., Bai, S. et

Скачать книгу