ТОП просматриваемых книг сайта:
High-Performance Materials from Bio-based Feedstocks. Группа авторов
Читать онлайн.Название High-Performance Materials from Bio-based Feedstocks
Год выпуска 0
isbn 9781119655626
Автор произведения Группа авторов
Жанр Химия
Издательство John Wiley & Sons Limited
95 95. Feng, D., Zhao, Y., Zhang, Y. et al. (2017). Effects of H2O and CO2 on the homogeneous conversion and heterogeneous reforming of biomass tar over biochar. International Journal of Hydrogen Energy 42 (18): 13070–13084. https://doi.org/10.1016/j.ijhydene.2017.04.018.
96 96. Ashok, J., Dewangan, N., Das, S. et al. (2020). Recent progress in the development of catalysts for steam reforming of biomass tar model reaction. Fuel Processing Technology 199: 106252. https://doi.org/10.1016/j.fuproc.2019.106252.
97 97. Kastner, J.R., Mani, S., and Juneja, A. (2015). Catalytic decomposition of tar using iron supported biochar. Fuel Processing Technology 130: 31–37. https://doi.org/10.1016/j.fuproc.2014.09.038.
98 98. Guo, F., Liang, S., Jia, X. et al. (2020). One‐step synthesis of biochar‐supported potassium‐iron catalyst for catalytic cracking of biomass pyrolysis tar. International Journal of Hydrogen Energy 45 (33): 16398–16408. https://doi.org/10.1016/j.ijhydene.2020.04.084.
99 99. Saka, S. and Kusdiana, D. (2001). Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80 (2): 225–231. https://doi.org/10.1016/S0016‐2361(00)00083‐1.
100 100. Hsu, A.F., Jones, K.C., Foglia, T.A. et al. (2004). Continuous production of ethyl esters of grease using an immobilized lipase. Journal of the American Oil Chemists’ Society 81 (8): 749–752. https://doi.org/10.1007/s11746‐004‐0973‐9.
101 101. Xiao, M., Mathew, S., and Obbard, J.P. (2009). Biodiesel fuel production via transesterification of oils using lipase biocatalyst. GCB Bioenergy 1 (2): 115–125. https://doi.org/10.1111/j.1757‐1707.2009.01009.x.
102 102. Tang, Z.E., Lim, S., Pang, Y.L. et al. (2018). Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: state of the art and fundamental review. Renewable and Sustainable Energy Reviews 92: 235–253. https://doi.org/10.1016/j.rser.2018.04.056.
103 103. Chang, B., Fu, J., Tian, Y. et al. (2012). Mesoporous solid acid catalysts of sulfated zirconia/SBA‐15 derived from a vapor‐induced hydrolysis route. Applied Catalysis A: General 437–438: 149–154. https://doi.org/10.1016/j.apcata.2012.06.031.
104 104. Kim, M., DiMaggio, C., Salley, S.O. et al. (2012). A new generation of zirconia supported metal oxide catalysts for converting low grade renewable feedstocks to biodiesel. Bioresource Technology 118: 37–42. https://doi.org/10.1016/j.biortech.2012.04.035.
105 105. Lam, M.K., Lee, K.T., and Mohamed, A.R. (2009). Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: an optimization study. Applied Catalysis B: Environmental 93 (1–2): 134–139. https://doi.org/10.1016/j.apcatb.2009.09.022.
106 106. Li, Y., Zhang, X.D., Sun, L. et al. (2010). Fatty acid methyl ester synthesis catalyzed by solid superacid catalyst SO42−/ZrO2‐TiO2/La3+. Applied Energy 87 (1): 156–159. https://doi.org/10.1016/j.apenergy.2009.06.030.
107 107. Mardhiah, H.H., Ong, H.C., Masjuki, H.H. et al. (2017). A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non‐edible oils. Renewable and Sustainable Energy Reviews 67: 1225–1236. https://doi.org/10.1016/j.rser.2016.09.036.
108 108. Mardhiah, H.H., Ong, H.C., Masjuki, H.H. et al. (2017). Investigation of carbon‐based solid acid catalyst from Jatropha curcas biomass in biodiesel production. Energy Conversion and Management 144: 10–17. https://doi.org/10.1016/j.enconman.2017.04.038.
109 109. Hara, M. (2010). Biodiesel production by amorphous carbon bearing SO3H, COOH and phenolic OH groups, a solid Brønsted acid catalyst. Topics in Catalysis 53 (11–12): 805–810. https://doi.org/10.1007/s11244‐010‐9458‐z.
110 110. Dawodu, F.A., Ayodele, O.O., Xin, J. et al. (2014). Application of solid acid catalyst derived from low value biomass for a cheaper biodiesel production. Journal of Chemical Technology and Biotechnology 89 (12): 1898–1909. https://doi.org/10.1002/jctb.4274.
111 111. Zhou, Y., Niu, S., and Li, J. (2016). Activity of the carbon‐based heterogeneous acid catalyst derived from bamboo in esterification of oleic acid with ethanol. Energy Conversion and Management 114: 188–196. https://doi.org/10.1016/j.enconman.2016.02.027.
112 112. Lee, H.V., Juan, J.C., and Taufiq‐Yap, Y.H. (2015). Preparation and application of binary acid‐base CaO‐La2O3 catalyst for biodiesel production. Renewable Energy 74: 124–132. https://doi.org/10.1016/j.renene.2014.07.017.
113 113. Kaur, M. and Ali, A. (2011). Lithium ion impregnated calcium oxide as nano catalyst for the biodiesel production from karanja and jatropha oils. Renewable Energy 36 (11): 2866–2871. https://doi.org/10.1016/j.renene.2011.04.014.
114 114. Zhang, F., Wu, X.H., Yao, M. et al. (2016). Production of biodiesel and hydrogen from plant oil catalyzed by magnetic carbon‐supported nickel and sodium silicate. Green Chemistry 18 (11): 3302–3314. https://doi.org/10.1039/c5gc02680f.
115 115. Thushari, I. and Babel, S. (2018). Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresource Technology 248: 199–203. https://doi.org/10.1016/j.biortech.2017.06.106.
116 116. Endut, A., Abdullah, S.H.Y.S., Hanapi, N.H.M. et al. (2017). Optimization of biodiesel production by solid acid catalyst derived from coconut shell via response surface methodology. International Biodeterioration and Biodegradation 124: 250–257. https://doi.org/10.1016/j.ibiod.2017.06.008.
117 117. Dehkhoda, A.M. and Ellis, N. (2013). Biochar‐based catalyst for simultaneous reactions of esterification and transesterification. Catalysis Today 207: 86–92. https://doi.org/10.1016/j.cattod.2012.05.034.
118 118. Piker, A., Tabah, B., Perkas, N. et al. (2016). A green and low‐cost room temperature biodiesel production method from waste oil using egg shells as catalyst. Fuel 182: 34–41. https://doi.org/10.1016/j.fuel.2016.05.078.
119 119. Shu, Y., Zhang, F., Wang, F. et al. (2018). Catalytic reduction of NOx by biomass‐derived activated carbon supported metals. Chinese Journal of Chemical Engineering 26 (10): 2077–2083. https://doi.org/10.1016/j.cjche.2018.04.019.
120 120.