Скачать книгу

http://www.iapws.org/relguide/Surf‐H2O‐2014.pdf (accessed 10 November 2021).

      14 14. Lange, N.A. and Dean, J.A. (1967). Handbook of Chemistry, 10ee, 1661–1665. New York: McGraw Hill.

      15 15. Vasquez, G., Alvares, E., and Navaza, J.M. (1995). Surface tension of alcohol water + water from 20 to 50 °C. Journal of Chemical and Engineering Data 40: 611–614.

      16 16. Borisova, A., De Bruyn, M., Budarin, V.L. et al. (2015). A sustainable freeze‐drying route to porous polysaccharides with tailored hierarchical meso‐and macroporosity. Macromolecular Rapid Communications 36: 774–779.

      17 17. Budarin, V.L., Luque, R., Clark, J.H., and Macquarrie, D.J. (2007a). Versatile mesoporous carbonaceous materials for acid catalysis. Chemical Communications 634–636. https://doi.org/10.1039/b614537j.

      18 18. Budarin, V., Clark, J.H., Luque, R. et al. (2007b). Tunable mesoporous materials optimised for aqueous phase esterifications. Green Chemistry 9: 992–995.

      19 19. Clark, J.H., Budarin, V., Dugmore, T. et al. (2008). Catalytic performance of carbonaceous materials in the esterification of succinic acid. Catalysis Communications 9 (8): 1709–1714.

      20 20. Aldana‐Pérez, A., Lartundo‐Rojas, L., Gómez, R., and Niño‐Gómez, M.E. (2012). Sulfonic groups anchored on mesoporous carbon Starbons‐300 and its use for the esterification of oleic acid. Fuel 100: 128–138.

      21 21. Budarin, V., Clark, J.H., Luque, R., and Macquarrie, D.J. (2007c). Towards a bio‐based industry: benign catalytic esterifications of succinic acid in the presence of water. Chemistry – A European Journal 13: 6914–6919.

      22 22. Sreedhar, I., Aniruddha, R., and Malik, S. (2019). Carbon capture using amine modified porous carbons derived from starch (Starbons®). SN Applied Sciences 1: 463.

      23 23. Matharu, A.S., Ahmed, S., Almonthery, B. et al. (2018). Starbon/high‐amylose corn starch‐supported N‐heterocyclic carbene–iron(III) catalyst for conversion of fructose into 5‐hydroxymethylfurfural. ChemSusChem 11: 716–725.

      24 24. Carneiro, L., Silva, A.R., Shuttleworth, P.S. et al. (2014). Synthesis, immobilization and catalytic activity of a copper(II) complex with a chiral bis(oxazoline). Molecules 19: 11988–11998.

      25 25. Zeikus, J.G., Jain, M.K., and Elankovan, P. (1999). Biotechnology of succinic acid production and markets for derived industrial products. Applied Microbiology and Biotechnology 51: 545–552.

      26 26. Gómez Millán, G., Phiri, J., Mäkelä, M. et al. (2019). Furfural production in a biphasic system using a carbonaceous solid acid catalyst. Applied Catalysis A. General 585: 117180.

      27 27. Luque, R., Budarin, V., Clark, J.H., and Macquarrie, D.J. (2009). Microwave‐assisted preparation of amides using a stable and reusable mesoporous carbonaceous solid acid. Green Chemistry 11: 459–461.

      28 28. Mesquita, L.M.M., Pinto, R.M.A., Salvador, J.A.R. et al. (2015). Starbon® 400‐HSO3: a green mesoporous carbonaceous solid acid catalyst for the Ritter reaction. Catalysis Communications 69: 170–173.

      29 29. Luque, R., Budarin, V., Clark, J.H. et al. (2011). Starbon® acids in alkylation and acetylation reactions: effect of the Brönsted‐Lewis acidity. Catalysis Communications 12: 1471–1476.

      30 30. Doi, S., Clark, J.H., and Macquarrie, D.J. (2002). New materials based on renewable resources: chemically modified expanded corn starches as catalysts for liquid phase organic reactions. Chemical Communications 2: 2632–2633.

      31 31. North, M., Pasquale, R., and Young, C. (2010). Synthesis of cyclic carbonates from epoxides and CO2. Green Chemistry 12: 1514–1539.

      32 32. Colmenares, J.C., Lisowski, P., and Łomot, D. (2013). A novel biomass‐based support (Starbon) for TiO2 hybrid photocatalysts: a versatile green tool for water purification. RSC Advances 3: 20186.

      33 33. Colmenares, J.C., Lisowski, P., Mašek, O. et al. (2018). Design and fabrication of TiO2/lignocellulosic carbon materials: relevance of low‐temperature sonocrystallization to photocatalysts performance. ChemCatChem 10: 3469–3480.

      34 34. Milescu, R.A., Dennis, M.R., McElroy, C.R. et al. (2020). The role of surface functionality of sustainable mesoporous materials Starbon® on the adsorption of toxic ammonia and sulphur gasses. Sustainable Chemistry and Pharmacy 15: 100230.

      35 35. Durá, G., Budarin, V.L., Castro‐Osma, J. et al. (2016). Importance of micropore–mesopore interfaces in carbon dioxide capture by carbon‐based materials. Angewandte Chemie International Edition 55: 9173–9177.

      36 36. Parker, H.L., Budarin, V.L., Clark, J.H., and Hunt, A.J. (2013). Use of Starbon for the adsorption and desorption of phenols. ACS Sustainable Chemistry and Engineering 1: 1311–1318.

      37 37. Tony, M.A., Parker, H.L., and Clark, J.H. (2016). Treatment of laundrette wastewater using Starbon and Fenton's reagent. Journal of Environmental Science Part A 51: 974–979.

      38 38. Tony, M.A., Parker, H.L., and Clark, J.H. (2019). Evaluating Algibon adsorbent and adsorption kinetics for launderette water treatment: towards sustainable water management. Water and Environment Journal 33: 401–408.

      39 39. Shannon, J.M., Clark, J.H., de Heer, M.I. et al. (2018). Kinetic and desorption study of selected bioactive compounds on mesoporous Starbons: a comparison with microporous‐activated carbon. ACS Omega 3: 18361–18369.

      40 40. Muñoz Garcia, A., Hunt, A.J., Budarin, V.L. et al. (2015). Starch‐derived carbonaceous mesoporous materials (Starbon®) for the selective adsorption and recovery of critical metals. Green Chemistry 17: 2146–2149.

      41 41. Dodson, J.R., Parker, H.L., Munoz Garcia, A. et al. (2015). Bio‐derived materials as a green route for precious & critical metal recovery and re‐use. Green Chemistry 17: 1951–1965.

      42 42. White, R.J., Budarin, V.L., Luque, R. et al. (2009). Supported metal nanoparticles on porous materials. Methods and applications. Chemical Society Reviews 38: 481–494.

      43 43. Baikousi, M., Georgiou, Y., Daikopolous, C. et al. (2015). Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon 93: 636–647.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SP+UGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAA8cAVoAAxsl RxwCAAACAAAAOEJJTQQlAAAAAAAQzc/6fajHvgkFcHaurwXDTjhCSU0EOgAAAAAA5QAAABAAAAAB AAAAAAALcHJpbnRPdXRwdXQAAAAFAAAAAFBzdFNib29sAQAAAABJbnRlZW51bQAAAABJbnRlAAAA AENscm0AAAAPcHJpbnRTaXh0ZWVuQml0Ym9vbAAAAAALcHJpbnRlck5hbWVURVhUAAAAAQAAAAAA D3ByaW50UHJvb2ZTZXR1cE9iamMAAAAMAFAAcgBvAG8AZgAgAFMAZQB0AHUAcAAAAAAACnByb29m U2V0dXAAAAABAAAAAEJsdG5lbnVtAAAADGJ1aWx0aW5Qcm9vZgAAAAlwcm9vZkNNWUsAOEJJTQQ7 AAAAAAItAAAAEAAAAAEAAAAAABJwcmludE91dHB1dE9wdGlvbnMAAAAXAAAAAENwdG5ib29sAAAA AABDbGJyYm9vbAAAAAAAUmdzTWJvb2wAAAAAAENybkNib29sAAAAAABDbnRDYm9vbAAAAAAATGJs c2Jvb2wAAAAAAE5ndHZib29sAAAAAABFbWxEYm9vbAAAAAAASW50cmJvb2wAAAAAAEJja2dPYmpj AAAAAQAAAAAAAFJHQkMAAAADAAAAAFJkICBkb3ViQG/gAAAAAAAAAAAAR3

Скачать книгу