Скачать книгу

alt="image1"/>

      Fig. 5.4 Diferentes posibilidades de combinación de versiones y vergencias.

      Cuando el objeto de interés se encuentra bastante alejado (infinito) y los ojos se encuentran en posición primaria, los dos ejes visuales están en paralelo, por lo que la convergencia será nula (fig. 5.5, izquierda). Ahora bien, cuando el objeto se acerca y es necesario converger sobre él para no verlo doble, cabe separar cuidadosamente varios casos posibles. En primer lugar, debemos tener en cuenta la región que se encuentra entre los dos ojos, cuyo plano vertical central se denomina plano medio. Y, en segundo lugar, debemos tener en cuenta si el objeto en cuestión se encuentra o no al nivel de los dos ojos, plano que se denota como plano de fijación. En tales circunstancias, es muy importante separar entre convergencia asimétrica y convergencia simétrica. La primera sirve para describir cualquier caso donde el objeto de interés se encuentre fuera de los planos medio y de fijación, lo cual ocurre la mayoría de las veces. En este primer tipo de convergencia, cabe distinguir si el objeto se encuentra fuera o no del plano de fijación. Si lo está, la convergencia asimétrica es de tipo 3D, y plantearemos más adelante su cálculo en un problema resuelto. Si, aun estando en el plano de fijación, el objeto de interés se encuentra fuera del plano medio, la convergencia asimétrica es de tipo 2D (fig. 5.5, centro), y plantearemos también más adelante su cálculo en otro problema resuelto. Solamente, en el caso de que el objeto se encuentre siempre sobre la línea media, que es la línea de intersección de los planos medio y de fijación, estaremos usando el concepto de convergencia simétrica (fig. 5.5, derecha), la cual será el centro de análisis en los dos capítulos siguientes. Aún así, en gran número de ocasiones, podemos pasar de convergencia asimétrica 3D a convergencia simétrica girando la cabeza de tal forma que el objeto de interés quede alineado entre los dos ojos y pertenezca al plano inclinado de fijación que definen ahora los dos ojos en posición primaria.

      Como el ángulo de vergencia C (a partir de ahora, convergencia) viene definido por la intersección de los dos ejes visuales, este valor puede proporcionarse en varias unidades angulares como segundos y minutos de arco, deg, rad, etc. Estas unidades son más bien características para las convergencias asimétricas (3D y 2D), pero en el caso de la convergencia simétrica son más adecuadas otras. Como avance del capítulo siguiente, tenemos una nueva unidad angular denotada como ángulo métrico [am], introducida por el oftalmólogo alemán Nagel en 1880. Se define como la cantidad de vergencia que realiza un sujeto ante un objeto colocado en la línea media a 1 m de distancia. Por tanto, el mismo objeto colocado a 0.5 m tendrá asociada una convergencia de 2 am para conseguir la fijación bifoveal y que no se vea doble.

image1

      Fig. 5.5 Casos de convergencia en el plano de fijación. Izquierda: convergencia nula asociada a la posición primaria (objeto muy lejano). Centro: convergencia asimétrica (2D). Derecha: convergencia simétrica (total).

      Otro aspecto que cabe aclarar en estos momentos es qué convenio de signos debemos utilizar con las vergencias. Esto también tiene que ver con cuánto gira monocularmente cada ojo cuando se realiza una vergencia. De partida tenemos el criterio horario: los giros antihorarios son positivos, y los giros horarios negativos. Aplicando este criterio al caso particular de los ojos, tanto para el ojo derecho como para el ojo izquierdo (la línea media simularía un espejo), tenemos que las rotaciones monoculares hacia el lado nasal (superior) son positivas, y hacia el lado temporal (inferior) son negativas. Con estas consideraciones, podemos deducir fácilmente de la última figura las contribuciones de las rotaciones monoculares para la convergencia asimétrica 2D y la convergencia simétrica. La fórmula general es directamente la suma de las rotaciones monoculares:

img

      pero, el valor final, incluido su signo, depende de la posición del objeto respecto de los dos ojos. En convergencia asimétrica 2D (y 3D) poco importa el signo, pero el resultado final siempre será la diferencia entre las rotaciones monoculares (fig. 5.5, centro). En cambio, en convergencia simétrica, total o parcial (cuando el objeto queda entre los dos ojos pero no justamente en la línea media), el resultado final es siempre la suma de las dos rotaciones monoculares. Si es convergencia simétrica total, será justamente el doble de la rotación monocular (fig. 5.5, derecha), siendo positiva cuando los ojos convergen porque el objeto es real, o negativa, cuando los ojos divergen porque el objeto es virtual. Para aclarar quizás al lector, proponemos la tabla siguiente en la que enumeramos los casos citados obviando el signo de las rotaciones monoculares:

      TABLA 1

      Casos de convergencia en el plano de fijación.

image1

      Las vergencias son movimientos muy complejos, ya que están relacionados tanto con la acomodación como con el mecanismo fusional. Si la borrosidad del objeto es el principal estímulo de la acomodación, la disociación de las dos imágenes retinianas o disparidad retiniana, que puede generar diplopía, puede asumirse a priori como el principal estímulo de la vergencia. Sin embargo, fue Maddox en 1893 quien identificó cuatro tipos de componentes en la respuesta vergencial: fusional, acomodativa, tónica y proximal. Es decir, que el ángulo de vergencia C puede descomponerse en cuatro ángulos menores, cuyo peso o importancia relativa no se analizarán hasta el tema siguiente. Esta clasificación se mantiene hasta la fecha con ciertos detalles que vamos a presentar a continuación.

       Vergencia fusional

      Es la componente de la vergencia inducida por la disparidad objeto (retiniana), es decir, cuando un objeto llega a verse doble. Al desplazarse un objeto, deja de verse fusionado (de forma haplópica) y la diplopía actúa como estímulo para la vergencia, que se producirá en la dirección adecuada para favorecer la haplopía. Parece ser que es independiente del color de los objetos y que está relacionada con la información de formas grandes, es decir, con las características del sistema magnocelular.

      La disparidad objeto es la variación de la posición horizontal relativa de los objetos de una escena sin cambiar el tamaño, ni la forma, ni la distancia de visualización. Como se puede observar en la fig. 5.6, cada par de círculos concéntricos, situado en cada ojo a la misma distancia, presenta un pequeño desplazamiento (la disparidad objeto) que generará una diferencia en las posiciones angulares de sus respectivas imágenes retinianas, que se denota habitualmente como disparidad retiniana o binocular. Por tanto, para no verlo doble, los ojos vergerán adecuadamente y conseguirán de forma simultánea una sensación de profundidad relativa (estereopsis) entre ambos círculos. Como se demostrará mucho más tarde (capítulo 13), la disparidad retiniana η para este caso particular de estereograma se relaciona directamente con la disparidad objeto o desplazamiento lateral Δπ entre los objetos y la distancia de observación d:

img image1

      Fig. 5.6 Parejas estereoscópicas típicas para analizar la vergencia fusional con un sinoptóforo presentando cada parte en cada

Скачать книгу