Скачать книгу

A. S., Twilley, R. R., Castañeda‐Moya, E., Riul, P., Cifuentes‐Jara, M., Manrow‐Villalobos, M., et al. (2018). Global controls on carbon storage in mangrove soils. Nature Climate Change, 8, 6, 534–538. https://doi.org/10.1038/s41558‐018‐0162‐5

      110 Ross, M. S., Reed, D. L., Sah, J. P., Ruiz, P. L., & Lewin, M. T. (2003). Vegetation environment relationships and water management in Shark Slough, Everglades National Park. Wetlands Ecology and Management, 11, 5, 291–303. doi: 10.1023/B:WETL.0000005541.30283.11

      111 Saintilan, N., Rogers, K., Mazumder, D., & Woodroffe, C. (2013). Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine Coastal Shelf Science, 128, 84–92. doi:10.1016/j.ecss.2013.05.010

      112 Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A., & Krauss, K. W. (2014). Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology, 20, 147–157. doi:10.1111/gcb.12341

      113 Sanderman, J., Hengl, T., Fiske, G., Solvik, K., Adame, M. F., Benson, L., et al. (2018). A global map of mangrove forest soil carbon at 30 m spatial resolution. Environmental Research Letters, 13, 5, 055002.

      114 Schulte, M. L. (2017). Hydrologic controls on ecosystem structure and function in the Great Dismal Swamp (Doctoral dissertation, Virginia Tech).

      115 Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., et al. (2015). Climate change and the permafrost carbon feedback. Nature, 520, 171–179. https://doi.org/10.1038/nature14338

      116 Singarayer, J. S., Valdes, P. J., Friedlingstein, P., Nelson, S., & Beerling, D. J. (2011). Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature, 470, 7332, 82–85. doi: 10.1038/nature09739

      117 Simard, M., Fatoyinbo, L., Smetanka, C., Rivera‐Monroy, V. H., Castañeda‐Moya, E., Thomas, N., & Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12, 1, 40–45. https://doi.org/10.1038/s41561‐018‐0279‐1

      118 Sleeter, R., Sleeter, B. M., Williams, B., Hogan, D., Hawbaker, T., & Zhu, Z. (2017). A carbon balance model for the great dismal swamp ecosystem. Carbon Balance and Management, 12, 1, 2. https://doi.org/10.1186/s13021‐017‐0070‐4

      119 Smart, L. S., Taillie, P. J., Poulter, B., Mitasova, H., Swenson, J. J., Smith, J. W., & Meentemeyer, R. K. (2020). Quantifying aboveground biomass changes in coastal ecosystems using repeat LiDAR and Landsat data. Environmental Research Letters, 15, 104528.

      120 Smith, L. C. (2004). Siberian Peatlands a Net Carbon Sink and Global Methane Source Since the Early Holocene. Science, 303, 5656, 353–356. https://doi.org/10.1126/science.1090553

      121 Taillie, P. J., Moorman, C. E., Poulter, B., Ardón, M., & Emanuel, R. E. (2019). Decadal‐Scale Vegetation Change Driven by Salinity at Leading Edge of Rising Sea Level. Ecosystems, 22, 8, 1918–1930. doi: 10.1007/s10021‐019‐00382‐w

      122 Tarnocai, C., & Stolbovoy, V. (2006). Northern peatlands: their characteristics, development and sensitivity to climate change. Developments in Earth Surface Processes, 9, 17–51. https://doi.org/10.1016/S0928‐2025(06)09002‐X

      123 Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., & Mazhitova, G. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, GB2023. doi:10.1029/2008GB003327

      124 Trettin, C. C., & Jurgensen, M. F. (2003). Carbon cycling in wetland forest soils. 311–331. Lewis Publishers, Boca Raton, London, New York, Washington, DC.

      125 Trilla, G. G., Kandus, P., Negrin, V., Vicari, R., & Marcovecchio, J. (2009). Tiller dynamic and production on a SW Atlantic Spartina alterniflora marsh. Estuarine, Coastal and Shelf Science, 85, 1, 126–133. doi: 10.1016/j.ecss.2009.07.034

      126 Tubiello, F. N., Biancalani, R., Salvatore, M., Rossi, S., & Conchedda, G. (2016). A worldwide assessment of greenhouse gas emissions from drained organic soils. Sustainability, 8, 4, 1–13. doi: 10.3390/su8040371

      127 Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8, 11–14. https://doi.org/10.1038/ngeo2325

      128 Turunen, J., Tomppo, E., Tolonen, K., & Reinikainen, A. (2002). Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions. The Holocene, 12, 1, 69–80. https://doi.org/10.1191/0959683602hl522rp

      129 Vernimmen, R., Hooijer, A., Akmalia, R., Fitranatanegara, N., Mulyadi, D., Yuherdha, A., et al. (2020). Mapping deep peat carbon stock from a LiDAR based DTM and field measurements, with application to eastern Sumatra. Carbon Balance Management, 15, 4. https://doi.org/10.1186/s13021‐020‐00139‐2

      130 Whitehead, D. R., & Oaks, R. Q. Jr. (1979). Developmental History of the Great Dismal Swamp. In: P. W. KirkJr. (Ed.), The Great Dismal Swamp (pp. 25–43). Charlottesville, VA: University Press of Virginia.

      131 Wijedasa, L.S. (2020). Peat swamp forest conservation in Southeast Asia (PhD). National University of Singapore, Singapore.

      132 Wijedasa, L.S., Jauhiainen, J., Könönen, M., Lampela, M., Vasander, H., Leblanc, M.‐C., et al. (2017). Denial of long‐term issues with agriculture on tropical peatlands will have devastating consequences. Global Change Biology, 23, 977–982. https://doi.org/10.1111/gcb.13516

      133 Warren, M., Frolking, S., Dai, Z., & Kurnianto, S. (2016). Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty‐first century: implications for climate mitigation. Mitigation and Adaptation Strategies for Global Change, 22, 1041–1061. doi:10.1007/s11027‐016‐9712‐1

      134 Wijedasa, L.S., Sloan, S., Page, S. E., Clements, G. R., Lupascu, M., & Evans, T. A. (2018). Carbon emissions from South‐East Asian peatlands will increase despite emission‐reduction schemes. Global Change Biology, 24, 4598–4613. https://doi.org/10.1111/gcb.14340

      135 Williams, K., Ewel, K. C., Stumpf, R. P., Putz, F. E., & Workman, T. W. (1999). Sea‐level rise and coastal forest retreat on the west coast of Florida. Ecology, 80, 6, 2045–2063. doi: 10.1890/0012‐9658(1999)080

      136 Woodwell, G. M., Rich, P. H., & Hall, C. A. S. (1973). Carbon in estuaries, p. 221–240. In G.M. Woodwell and E. V Pecan [eds.], Carbon and the Biosphere. Technical Information Center, U.S. Atomic Energy Commission, National Technical Information Service.

      137 Wurster, F. C., Ward, S., & Pickens, C. (2016). Forested peatland management in southeast Virginia and northeast North Carolina, USA. In Proceedings of the 15th International Peat Congress, Sarawak, Malaysia. American Geophysical Union, 92, 12, pp.97–98.

      138 Xiao, D., Deng, L., Kim, D. G., Huang, C., & Tian, K. (2019). Carbon budgets of wetland ecosystems in China. Global Change Biology, 25, 6, 2061–2076. https://doi.org/10.1111/gcb.14621

      139 Xu, J., Morris, P. J., Liu, J., & Holden, J. (2018). PEATMAP: Refining estimates of global peatland distribution based on a meta‐analysis. Catena, 160, 134–140. Скачать книгу