Скачать книгу

J. B., Sikka, M., Oechel, W., Huntzinger, D., Melton, J. R., Koven, C. D., et al. (2014). Carbon cycle uncertainty in the Alaskan Arctic. Biogeosciences, 11, 4271–4288. https://doi.org/10.5194/bg‐11‐4271‐2014

      48 Fenner, N., & Freeman, C. (2011). Drought‐induced carbon loss in peatlands. Nature Geoscience, 4, 895–900. https://doi.org/10.1038/ngeo1323

      49 Friess, D. A. (2019). Where the tallest mangroves are. Nature Geoscience, 12, 4–5. doi: 10.1038/s41561‐018‐0280‐8

      50 Frolking, S., Roulet, N. T., Tuittila, E. S., Bubier, J. L., Quillet, A., Talbot, J., & Richard, P. J. H. (2010). A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. Earth System Dynamics, 1, 1–21. doi: 10.5194/esd‐1‐1‐2010

      51 Frolking S., Talbot, J., Jones, M. C., Treat, C. C, Kauffman, J. B., Tuittila, E.‐S., & Roulet, N. (2011). Peatlands in the Earth’s 21st century climate system. Environmental Reviews, 19, 371–396. doi: 10.1139/A11‐014

      52 Gallego‐Sala A.V., et al. (2018) Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change, 8, 907–913. https://doi.org/10.1038/s41558‐018‐0271‐1

      53 Goldberg, L., Lagomasino, D., Thomas, N., & Fatoyinbo, T. (2020). Global declines in human‐driven mangrove loss. Global Change Biology, 26, 10, 5844–5855. https://doi.org/10.1111/gcb.15275

      54 Gorham, E. (1991). Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. Ecological Applications, 1, 2, 182–195. https://doi.org/10.2307/1941811

      55 Gumbricht, T., Roman‐Cuesta, R. M., Verchot, L., Herold, M., Wittmann, F., Householder, E., et al. (2017). An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Global Change Biology, 23, 3581–3599. https://doi.org/10.1111/gcb.13689

      56 Hamilton, S. E., & Friess, D. A. (2018). Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nature Climate Change, 8, 3, 240–244. https://doi.org/10.1038/s41558‐018‐0090‐4

      57 Henttonen, H. M., & Kangas, A. (2015). Optimal plot design in a multipurpose forest inventory. Forest Ecosystems, 2, 1, 31. doi: 10.1186/s40663‐015‐0055‐2

      58 Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardón, M., & Gell, P. (2015). A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere, 6, 10, art206. doi: 10.1890/ES14‐00534.1

      59 Holmquist, J. R., Windham‐Myers, L., Bliss, N., Crooks, S., Morris, J. T., Megonigal, J. P., et al. (2018). Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States. Scientific Reports, 8, 1–16. doi:10.1038/s41598‐018‐26948‐7

      60 Houghton, R. A., & Nassikas, A. A. (2017). Global and regional fluxes of carbon from land use and land cover change 1850–2015. Global Biogeochemical Cycles, 31, 3, 456–472. doi: 10.1002/2016GB005546

      61 Hu, S., Niu, Z., & Chen, Y. (2017). Global Wetland Datasets: A review. Wetlands, 2014, 1–11. doi: 10.1007/s13157‐017‐0927‐z

      62 Hudak, A. T., Strand, E. K., Vierling, L. A., Byrne, J. C., Eitel, J. U. H., Martinuzzi, S., & Falkowski, M. J. (2012). Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys. Remote Sensing of Environment, 123, 25–40. doi: 10.1016/j.rse.2012.02.023

      63 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.‐L., et al. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11, 23, 6573–6593. https://doi.org/10.5194/bg‐11‐6573‐2014

      64 Hugelius, G., Loisel, J., Chadburn, S., Jackson, R. B., Jones, M., MacDonald, G., et al. (2020). Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proceedings of the National Academy of Sciences, 117, 34, 20438–20446. https://doi.org/10.1073/pnas.1916387117

      65 Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2004). National‐scale biomass estimators for United States tree species. Forest Science, 49, 1, 12–35.

      66 Joosten, H., & Clarke, D. (2002). Wise use of mires and peatlands: background and principles including a framework for decision‐making. Jyväskylä] : [Greifswald: International Peat Society ; International Mire Conservation Group.

      67 Kelleway, J., Serrano, O., Baldock, J., Cannard, T., Lavery, P., Lovelock, C. E., et al. (2017). Technical review of opportunities for including blue carbon in the Australian Government’s Emissions Reduction Fund.

      68 Kirwan, M. L., & Megonigal, J. P. (2013). Tidal wetland stability in the face of human impacts and sea‐level rise. Nature, 504, 53–60. doi:10.1038/nature12856

      69 Kirwan, M. L., & Mudd, S. M. (2012). Response of salt‐marsh carbon accumulation to climate change. Nature, 489, 550–553. doi:10.1038/nature11440

      70 Kivinen, E., & Pakarinen, P. (1981). Geographical distribution of peat resources and major peatland complex types in the world. Annales Academiae Scientarium Fennicae, Series A III, Geologica‐Geographica, 132, 1, 1–29.

      71 Kleinen, T., Brovkin, V., & Schuldt, R. J. (2012). A dynamic model of wetland extent and peat accumulation: Results for the Holocene. Biogeosciences, 9, 1, 235–248. doi: 10.5194/bg‐9‐235‐2012

      72 Kolka, R. K., Mitchell, C. P., Jeremiason, J. D., Hines, N. A., Grigal, D. F., Engstrom, D. R., et al. (2011). Mercury cycling in peatland watersheds. pp. 349–370. CRC Press: Boca Raton, FL.

      73 Kolka, R., Trettin, C., Tang, W., Krauss, K., Bansal, S., Drexler, J., et al. (2018). Chapter 13: Terrestrial wetlands. In: Cavallaro, N., Shrestha, G., Birdsey, R., Mayes, M. A., Najjar, R. G., Reed, S. C., Romero‐Lankao, P., Zhu, Z. (Eds.) Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report. U.S. Global Change Research Program, Washington, DC, USA, 507–567.

      74 Kuhry, P., & Turunen, J. (2006). The Postglacial Development of Boreal and Subarctic Peatlands. In R. K. Wieder & D. H. Vitt (Eds.), Boreal Peatland Ecosystems (Vol. 188, pp. 25–46). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978‐3‐540‐31913‐9_3.

      75 Lähteenoja, O., Reátegui, Y. R., Räsänen, M., Torres, D. D. C., Oinonen, M., & Page, S. (2012). The large Amazonian peatland carbon sink in the subsiding Pastaza‐Marañón foreland basin, Peru. Global Change Biology, 18, 164–178. https://doi.org/10.1111/j.1365‐2486.2011.02504.x

      76 Lamers, L. P., Vile, M. A., Grootjans, A. P., Acreman, M. C., van Diggelen, R., Evans, M. G., et al. (2015). Ecological restoration of rich fens in Europe and North America: from trial and error to an evidence‐based approach. Biological Reviews, 90, 1, 182–203. https://doi.org/10.1111/brv.12102

      77 Leifeld, J., & Menichetti, L. (2018). The underappreciated potential of peatlands in global climate change mitigation strategies. Nature Communications, 9, 1071. https://doi.org/10.1038/s41467‐018‐03406‐6

      78 Limpens, J., Berendse, F., Blodau, C., Canadell, J.

Скачать книгу