Аннотация

Брошюра написана по материалам лекции, прочитанной автором в летней школе «Современная математика» в Дубне в июле 2004 г. Она посвящена одному из разделов теории динамических систем – аттракторам и их хаусдорфовой (фрактальной) размерности. Рассматриваются различные примеры отображений, порождающие как странные, так и классические аттракторы. В качестве основного примера странных аттракторов рассматривается соленоид Смейла—Вильямса, проводится аналогия между ним и канторовым совершенным множеством. От читателя не требуется никаких начальных знаний из теории дифференциальных уравнений. Брошюра адресована старшим школьникам и студентам младших курсов.

Аннотация

Книга содержит записи курсов лекций, прочитаных академиком В.И. Арнольдом в 2005 г. в Дубне, на летней школе «Современная математика». В книге рассказывается о нескольких новых направлениях математических исследований, основанных на численных экспериментах.

Аннотация

Учебное пособие посвящено классическим задачам коммутативной алгебры и теории инвариатов. Помимо начальных сведений о градуированных алгебрах, их рядах Пуанкаре и многочленах Гильберта, приводятся доказательства теоремы Маколея о размерностях компонент стандартных градуированных алгебр, формулы Молина для ряда Пуанкаре алгебры инвариантов конечной линейной группы и теоремы Нагаты—Стейнберга о том, что алгебра инвариантов некоторой явно заданной линейной алгебраической группы не является конечно порожденной. Последний результат является контрпримером к 14-й проблеме Гильберта. Пособие содержит более 40 задач, к каждой из которых даны подробные указания. Излагаемый материал доступен студентам младших курсов физико-математических специальностей университетов. Для студентов, аспирантов, преподавателей и научных работников, интересующихся алгеброй, геометрией и комбинаторикой.

Аннотация

Настоящая брошюра возникла на основе лекций, прочитанных автором на летней математической школе «Современная математика» в Дубне в 2006 г. В ней рассказывается о двух мощных методах современного дискретного анализа вероятностном и алгебраическом. Оба эти метода широко применяются сейчас для решения различных задач экстремальной комбинаторики. В частности, многие важные аспекты таких классических проблем, как проблема Борсука или проблема отыскания чисел Рамсея, рассматриваются исключительно с позиций вероятностной и алгебраической технологий. В брошюре на наиболее ярких примерах подобных задач излагаются основы методов. Необходимые сведения из (элементарной) теории вероятностей, анализа и алгебры приводятся в конце брошюры в специальном разделе. Брошюра доступна студентам младших курсов и даже школьникам. Однако полезна она может быть всем, кто интересуется комбинаторикой.

Аннотация

Эта брошюра, написанная по материалам лекций, прочитанных автором для школьников и студентов на летней школе «Современная математика», представляет собой введение в теорию фракталов – новый, актуальный раздел математики. Начинаясь с основных определений, книга доходит до свежих результатов и нерешенных проблем. Для студентов младших курсов и школьников старших классов.

Аннотация

Брошюра написана по материалам лекции, прочитанной автором 23 июля 2005 года в летней школе «Современная математика» в Дубне. Она посвящена формализации такого интуитивно ясного термина, как «случайность». В брошюре рассматривается четыре разных подхода к этому понятию, основанных на характерных свойствах случайных последовательностей: частотоустойчивость, хаотичность, типичность и непредсказуемость. Вводятся важнейшие в теории алгоритмов понятия перечислимости, вычислимости, энтропии и колмогоровской сложности. С их помощью и можно попытаться ответить на вопрос, с которым не справляется классическая теория вероятностей: определить, можно ли, например, индивидуальную последовательность нулей и единиц считать случайной или нет. В последней главе проводится обобщение понятий частотоустойчивости, хаотичности, типичности и непредсказуемости на случай вычислимого распределения. Брошюра адресована старшим школьникам и студентам младших курсов. Предварительных знаний от читателя не потребуется, однако будет полезным знакомство с теорией алгоритмов, а для чтения последней главы – с основными понятиями теории вероятностей. Первое издание книги вышло в 2006 г.